image thumbnail


version 0.23 (161 KB) by Artem Lenskiy
The functions are designed to communicate between Python Pandas and Matlab


Updated Thu, 26 May 2022 08:36:00 +0000

From GitHub

View License on GitHub


The functions are designed to convert Pandas DataFrames and Series to Matlab and back. Function df2t converts DataFrames and Series to Matlab in memory w/o saving anthing to the disk, while t2df converts Table to DataFrame.

Make sure to set up Python in Matlab

pe = pyenv;
if pe.Status == "NotLoaded"
    [~,exepath] = system("where python");
    pe = pyenv('Version',exepath);

Create a simple dataframe from json and convert to Table

jsonData = "{'gender': (['male'] * 6)+['female']," + ...
       "'name': ['Anton', 'Bill', 'Charlie', 'Don', 'Emil', 'Emil', 'Charlie']," +...
       "'eye_color': ['blue', 'green', 'green', 'green', 'blue', 'green', 'green']}";
df = py.pandas.DataFrame(py.eval(jsonData, py.dict()));
testTable = df2t(df);
% plot the statistics
figure("Color","white", "Position", [0,0,800,400])
subplot(1,3,1), hist(categorical(testTable.gender))
subplot(1,3,2), hist(categorical(
subplot(1,3,3), hist(categorical(testTable.eye_color))


Create a Table and convert it to DataFrame

% then use Pandas to sample from it and create new dataframe, and convert it to Table
Name            = {["Roger", "Sanchez"];
                   ["Paul", "Johnson"];
                   ["Lisa", "Li"];
                   ["Don", "Diaz"];
                   ["Havana ", "Brown"]};
Age             = [38;43;38;40;49];
Smoker          = logical([1;0;1;0;1]);
Height          = [71;69;64;67;64];
Weight          = [176;163;131;133;119];
BloodPressure   = [124 93; 109 77; 125 83; 117 75; 122 80];
T = table(Name,Age,Smoker,Height,Weight,BloodPressure);
T.BMI           = (T.Weight * 0.453592)./(T.Height * 0.0254).^2;
df              = t2df(T);
% Sample from the dataframe
df_sampled      = df.sample(int64(10), replace=true);
table_sampled   = df2t(df_sampled)


Convert a Series to Table

% Create a Series of random integers using numpy.random and convert to table 
rng = py.numpy.random.RandomState(int64(42));
integers = rng.randint(int64(0), int64(10), int64(4));
pySeries = py.pandas.Series(integers, pyargs('name', 'integers'));
matSeries = df2t(pySeries)


% Create a Series of random integers using Matlab rand with letters as indexes
% and convert to Matlab.
pySeries = py.pandas.Series(rand(1,4), pyargs('name', 'real','index', {'a', 'b', 'c', 'd'}));


% Create a Series of strings 
data_list = {"Jeff Bezos", "Elon Musk",...
             "Bernard Arnault", "Bill Gates", "Warren Buffett"};
pySeries = py.pandas.Series(data_list, pyargs('name', 'Billioners','index', int64([1:numel(data_list)])));
billioners = df2t(pySeries);


Related Utilities

py2mat.m and mat2py.m convert generic Python variables to Matlab variables and vice versa.

Cite As

Artem Lenskiy (2022). PandasToMatlab (, GitHub. Retrieved .

MATLAB Release Compatibility
Created with R2022a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.