Non-homogeneous and linear-differential-equation solutions (update:13-07-07)

Version 1.0.0.0 (69.5 KB) by Ali OZGUL
homogen and non-homogen solution
2.2K Downloads
Updated 13 Jul 2007

No License

DESCRIPTION;

This program is a running module for homsolution.m Matlab-functions. Also, differential non-homogeneous or homogeneous equations are solution possible the Matlab&Mapple Dsolve.m&desolve main-functions. But;

EXAMPLE;
[1]--+---Sometime mapple function is produce more short solution
|--- My function's solution:

[ R^4-4*R^3 ]*(y) = [5 ]
y = [ +exp^(4x).(C4)+exp^(0x).(C1+C2*x^1+C3*x^2) ]g + [-5/24*x^3-5/32*x^2-5/64*x-5/256 ]s
Generally solution Special solution
#### true ##### #### true #####
|
|--- Mapple's desolve function solution:

Dsolve('D4y-4*D3y-5=0','x')
ans =1/64*exp(4*x)*C1-5/24*x^3+1/2*C2*x^2+C3*x+C4
y= 1/64*exp(4*x)*C1 + 1/2*C2*x^2 + C3*x + C4 - 5/24*x^3
Generally solution Special solution (more short)
#### true ##### #### true #####

[2]---+---Matlab's Dsolve.m function is depend be selected input-veriables string character
|
|--- My function's solution:

>> homsolution([(R^4-16)^5*(R^2+1)*(R/(R^2+R+1))^2, x^20+x^10+sin(x)],0)
where R=[d/dx] and [f(R)].y = Q(x,y) differential equation solution

____Equation [1]

[ (R^4-16)^5*(R^2+1)*R^2/(R^2+R+1)^2 ]*(y) = [x^20+x^10+sin(x) ]
y= [ +exp^(-2x).(C20+C21*x^1+C22*x^2+C23*x^3+C24*x^4)+exp^(2ix)+ ...]g+ [ ...1/1518750*x*cos(x)^6+ ...]s

|
|--- Mapple's desolve function solution:

Dsolve('((Dy)^4-16)^5*((Dy)^2+1)*(Dy)^2/((Dy)^2+Dy+1)^2-(x^20+x^10+sin(x))=0','x')
(I don't advise , don't try this module, non-solution )

[3]---+---Sub-function running speed (for running 29-examples)
if you hide homsolution.m-lines(68,69,155,156) as fprintf,disp etc.. command then

My function is 1.602342 second (tic-toc & profiler control)
Matlab function is 1.094779 second

ALGORITHM;

--+--if Q(x,y)<> 0 than special solution
root value root-order degree
r1=R1 n1
r2=R2 n2
..... ....
rn=Rn nn
|---+---if root value = real
|
|----+---[max real root order degree]
else
|
Solution=1/[R-small root(1)]...
1/[R-small root(2)]...
1/[R-small root(n)]*[Q(x,y] (**)
where all step is first-order degree linear diff. equ. sol.
|---+---if root value = complex
|
|----+---[max complex root order degree]
else
|
Solution=1/[R-small root(1)]...
1/[R-small root(2)]...
1/[R-small root(n)]*[Q(x,y] (**)
where all step is first-order degree linear diff. equ. sol.

SYNTAX:

syntax.input : solution=regsolution.ouput (differential main function solution)
syntax.output: regsolt =conforming roots values for special solutions

EXAMPLE:
[ (R-2)^2*(R^2+1)^2*(R-1)^2 ]*(y) = [x^8 ]

Solution=
1.0000 2.0000
2.0000 2.0000
0 + 1.0000i 2.0000
0 - 1.0000i 2.0000

regsolt =

1.0000 firstly real roots
1.0000
2.0000
2.0000 --->look ALGORITHM<---
0 - 1.0000i
0 - 1.0000i
0 + 1.0000i secondly imaginer roots
0 + 1.0000i

Solution=[1/(R-1)][1/(R-1)][1/(R-2)][1/(R-2)][1/(R+sqrt(-1))] [1/(R+sqrt(-1))][1/(R-sqrt(-1))][1/(R-sqrt(-1))][ Q(x,y) ]

Cite As

Ali OZGUL (2024). Non-homogeneous and linear-differential-equation solutions (update:13-07-07) (https://www.mathworks.com/matlabcentral/fileexchange/15514-non-homogeneous-and-linear-differential-equation-solutions-update-13-07-07), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R13SP1
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Mathematics in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

html/

Version Published Release Notes
1.0.0.0

Updated regsolution.m file