Forced damped driven pendulum
This simulink model simulates the damped driven pendulum, showing it's chaotic motion.
theta = angle of pendulum
omega = (d/dt)theta = angular velocity
Gamma(t) = gcos(phi) = Force
omega_d = (d/dt) phi
Gamma(t) = (d/dt)omega + omega/Q + sin(theta)
Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method.
Chaos can be seen for Q=2, omega_d=w/3.
The program outputs to Matlab time, theta(time) & omega(time).
Plot the phase space via:
plot(mod(theta+pi, 2*pi)-pi, omega, '.');
Plot the Poincare sections using:
t_P = (0:2*pi/omega_d:max(time))';
plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), '.');
System is described in:
"Fractal basin boundaries and intermittency in the driven damped pendulum"
E. G. Gwinn and R. M. Westervelt
PRA 33(6):4143 (1986)
Cite As
Adam Wyatt (2025). Forced damped driven pendulum (https://www.mathworks.com/matlabcentral/fileexchange/15656-forced-damped-driven-pendulum), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- MATLAB > Mathematics > Fractals >
- Sciences > Physics > General Physics >
- Physical Modeling > Simscape Multibody > Multibody Modeling > Assembly >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |