Polynomial coefficient vector derived from sub-polynomial factors

A polynomial coefficient vector is derived from several powered polynomial factors.
1.3K Downloads
Updated 27 Apr 2009

View License

For given
p(x) = PROD[i=1,m]{SUM[j=2,n+2]{(A(i,j)*x^(j-2))^A(i,1)}}
we shall get
p(x) = SUM[s=1,N+1]{p(s)^(N+1-s)}

For example
If
p(x) = (x-4)^5 * (3x^6-7x^3+5x+2)^2 * (x^3+8)^3 * x^2
or
A = [ 5 -4 1 0 0 0 0 0
2 2 5 0 -7 0 0 3
3 8 0 0 1 0 0 0
1 0 0 1 0 0 0 0 ]
then from
p = polyget(A)
we get
p = [ 9 -180 1440 -5586 .... -7864320 -209715 0 0 ]
or
p(x) = 9x^28-180x^27+1440x^26-5586x^25+ ... -7864320x^3-2097152x^2.

This routine is mainly to be used for creating test polynomials to
(a) determine the polynomial GCD of a pair of polynomials,
(b) find the roots with muliplicities of a given polynomial.

References in MATLAB Central:
(1) "GCD of polynomials,"
File ID 20859, 12 Apr 2009
(2) "Factorization of a polynomial with multiple roots,"
File ID: 20867, 27 Jul 2008
(3) "Multiple-roots polynomial solved by partial fraction expansion,"
File ID: 22375, 10 Dec 2008

F C Chang 04/25/09

Cite As

Feng Cheng Chang (2025). Polynomial coefficient vector derived from sub-polynomial factors (https://www.mathworks.com/matlabcentral/fileexchange/23900-polynomial-coefficient-vector-derived-from-sub-polynomial-factors), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R13
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Polynomials in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.1.0.0

Correct typo in m-file

1.0.0.0