Bayesian VUS Classifier
This MATLAB exercise utilizes a set of four MATLAB programs to both train a Bayesian classifier (using a designated training set of 11 speech files embedded within a background of low level noise and miscellaneous acoustic effects (e.g. lip smack, pops, etc.)), and to classify frames of signal from independent test utterances as belonging to one of the three classes:
1. Class 1 – Silence/Background
2. Class 2 – Unvoiced Speech
3. Class 3 – Voiced Speech
using a Bayesian statistical framework as discussed in Section 10.4 of TADSP. The feature vector associated with each frame of signal consists of five short-time speech analysis parameters, namely:
1. short-time log energy,
2. short-time zero crossings per 10 msec interval,
3. normalized autocorrelation at unit sample delay,
4. first predictor coefficient of p = 12 pole LPC analysis,
5. normalized log prediction error of p = 12 LPC analysis.
Cite As
Speech Processing (2024). Bayesian VUS Classifier (https://www.mathworks.com/matlabcentral/fileexchange/45625-bayesian-vus-classifier), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Signal Processing > Signal Processing Toolbox >
- AI and Statistics > Deep Learning Toolbox > Image Data Workflows > Pattern Recognition and Classification >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
VUS/
VUS/VUS_Analysis/
VUS/VUS_Training/
VUS/functions_lrr/
Version | Published | Release Notes | |
---|---|---|---|
1.4.0.0 | code updates; Read_Me.txt setup file; pathnew_matlab_central example
|
||
1.3.0.0 | fixed path to speech_files; edited GUI to set sampling rate to 10000 Hz |
||
1.2.0.0 | text size on buttons made smaller |
||
1.1.0.0 | Updated description |
||
1.0.0.0 |