Shear Force and Bending Moment Diagram for simply supported beam
% This Matlab code can be used for simply supported beam with single point
% load or uniformly distributed to find the
% * Support reaction
% * Maximum Bending Moment
% * Shear force diagram
% * Bending Moment daigram
clc; clear; close all
disp('Simply Supported Beam');
% Data input section
disp(' ');
L = input('Length of beam in meter = ');
disp(' ');disp('Type 1 for point load, Type 2 for udl')
Type = input('Load case = ');
if Type == 1
disp(' ');
W = input('Load applied in kN = ');
disp(' ');
a = input('Location of Load from left end of the beam in meter = ');
c = L-a;
R1 = W*(L-a)/L; % Left Support Reaction.
R2 = W*a/L; % Right Support Reaction.
else
disp(' ');
W = input('Uniformly distributed load in kN/m = ');
disp(' ');
b = input('Length of udl in meter = ');
disp(' ');
cg = input('C.G of udl from left end of the beam in meter = ');
a = (cg-b/2);
c = L-a-b;
R1 = W*b*(b+2*c)/(2*L); % Left Support Reaction.
R2 = W*b*(b+2*a)/(2*L); % Right Support Reaction.
end
% Discretization of x axis.
n = 1000; % Number of discretization of x axis.
delta_x = L/n; % Increment for discretization of x axis.
x = (0:delta_x:L)'; % Generate column array for x-axis.
V = zeros(size(x, 1), 1); % Shear force function of x.
M = zeros(size(x, 1), 1); % Bending moment function of x.
% Data processing section
if Type == 1
for ii = 1:n+1
% First portion of the beam, 0 < x < b
V(ii) = R1;
M(ii) = R1*x(ii);
% Second portion of the beam, b < x < L
if x(ii) >= a
V(ii) = R1-W;
M(ii) = R1*x(ii)-W*(x(ii)-a);
end
end
x1 = a;
Mmax = W*a*(L-a)/L;
else
for ii = 1:n+1
% First portion of the beam, 0 < x < a
if x(ii) < a
V(ii) = R1;
M(ii) = R1*x(ii);
elseif a <= x(ii) && x(ii)< a+b
% Second portion of the beam, a < x < a+b
V(ii) = R1-W*(x(ii)-a);
M(ii) = R1*x(ii)-W*((x(ii)-a)^2)/2;
elseif x(ii) >= (a+b)
% Second portion of the beam, a+b < x < L
V(ii) = -R2;
M(ii) = R2*(L-x(ii));
end
end
x1 = a+b*(b+2*c)/(2*L);
Mmax = W*b*(b+2*c)*(4*a*L+2*b*c+b^2)/(8*L^2);
end
disp(' ');disp (['Left support Reaction' ' = ' num2str(R1) ' ' 'kN'])
disp(' ');disp (['Left support Reaction' ' = ' num2str(R2) ' ' 'kN'])
disp(' ');disp (['Maximum bending moment' ' = ' num2str(Mmax) ' ' 'kNm'])
figure
subplot(2,1,1);
plot(x, V, 'r','linewidth',1.5); % Grafica de las fuerzas cortantes.
grid
line([x(1) x(end)],[0 0],'Color','k');
line([0 0],[0 V(1)],'Color','r','linewidth',1.5);
line([x(end) x(end)],[0 V(end)],'Color','r','linewidth',1.5);
title('Shear Force Diagram','fontsize',16)
text(a/2,V(1),num2str(V(1)),'HorizontalAlignment','center','FontWeight','bold','fontsize',16)
text((L-c/2),V(end),num2str(V(end)),'HorizontalAlignment','center','FontWeight','bold','fontsize',16)
axis off
subplot(2,1,2);
plot(x, M, 'r','linewidth',1.5); % Grafica de momentos flectores;
grid
line([x(1) x(end)],[0 0],'Color','k');
line([x1 x1],[0 Mmax],'LineStyle','--','Color','b');
title('Bending Moment Diagram','fontsize',16)
text(x1+1/L,Mmax/2,num2str(roundn(Mmax,-2)),'HorizontalAlignment','center','FontWeight','bold','fontsize',16)
text(x1,0,[num2str(roundn(x1,-2)) ' m'],'HorizontalAlignment','center','FontWeight','bold','fontsize',16)
axis off
Cite As
Sajeer Modavan (2025). Shear Force and Bending Moment Diagram for simply supported beam (https://www.mathworks.com/matlabcentral/fileexchange/54260-shear-force-and-bending-moment-diagram-for-simply-supported-beam), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |