image thumbnail

griddataLSC

version 1.0.0.8 (4.38 KB) by Jack
Least Squares Collocation - data interpolation, empricial covariance estimation & function fitting

380 Downloads

Updated Mon, 10 Dec 2018 08:21:39 +0000

View License

griddataLSC can be used interpolate data using least squares collocation.
It offers the choice of 6 covariance functions;
1. the 3-D logarithmic covariance function
2. the 2-D exponential covariance function
3. the 2-D Reilly covariance function
4. the 2-D triangular covariance function
5. the 2-D Gaussian covariance function
6. the 2-D second order Markov covariance function
The covariance function parameters can be specified or they can be fitted to estimated empirical covariance values.
________________________________________________________________________
How to use griddataLSC
2-D observation data:
.............G (x,y)+N(X,Y)_________G(x,y)+N(X,Y).........
............................/........../............/...............................
........................../_G (x_i,y_i)?__/................................
......................../.........../............/..................................
G(x,y)+N(X,Y)/______/______/G(x,y)+N(X,Y)..............
for some observation data G made a locations X,Y with estimated noise variances N (~=0) (for each measurement G) griddataLSC can interpolate G by least squares collocation to locations Xi,Yi using one of the following covariance functions,
- the exponential,
- Reilly,
- triangular,
- Gaussian or
- Second order Markov model
to obtain values Gi, and determine the covariance function parameters C0 and D ;
[Gi,C0,D]=griddataLSC('exp',X,Y,G,N,Xi,Yi); for exponential
[Gi,C0,D]=griddataLSC('Reilly',X,Y,G,N,Xi,Yi); for Reilly
[Gi,C0,D]=griddataLSC('tri',X,Y,G,N,Xi,Yi); for triangular
[Gi,C0,D]=griddataLSC('gaus',X,Y,G,N,Xi,Yi); for Gaussian
[Gi,C0,D]=griddataLSC('som',X,Y,G,N,Xi,Yi); for Second order Markov
to also out put the estimated empirical covariance values the users can specify the following additional output arguments
e.g. for exponential

[Gi,C0,D,Covariancevalues,CovarianceDistance]=griddataLSC('exp',X,Y,G,N,Xi,Yi);

a figure of the empirical covariance values and the fitted model can also be output using the additional input arguments

e.g. for exponential

[Gi,C0,D,Covariancevalues,CovarianceDistance]=griddataLSC('exp',X,Y,G,N,Xi,Yi,'covfigure');

if C0,D are already known and you want to specify them, use
e.g. for exponential
[Gi]=griddataLSC('exp',X,Y,G,N,Xi,Yi,C0,D);

3-D observation data:
..............G (x,y,z)+N(x,y,z)_________G(x,y,z)+N(x,y,z)...
.............................../............/............/.............................
............................./______/______/...............................
.........................../............/............/.................................
G(x,y,z)+N(x,y,z)/______/______/G(x,y,z)+N(x,y,z).........
..........................._____________...................................
........................./............/............./...................................
......................../_G (x_i,y_i,zi)?_/....................................
....................../............/............./......................................
...................../______/______/.......................................

for some observation data G made a locations X,Y and Z with estimated noise variances N (~=0) (for each measurement G) griddataLSC can interpolate G to locations Xi,Yi,Zi using a 3-D logarithmic covariance function fitted to the data emprical covariance values,

[Gi,C0,D,T]=griddataLSC('log',X,Y,Z,G,N,Xi,Yi,Zi);

to out put the empirical covariance values, use the following additional output arguments

[Gi,C0,D,T,Covariancevalues,CovarianceDistance]=griddataLSC('log',X,Y,Z,G,N,Xi,Yi,Zi);

to output a figure of the empirical covariance values and the fitted model,use the following additional input arguments

[Gi,C0,D,T,Covariancevalues,CovarianceDistance]=griddataLSC('log',X,Y,Z,G,N,Xi,Yi,Zi,'covfigure');

if C0,D,T are already known or the user would like to specify them, then the following can be used
[Gi]=griddataLSC('log',X,Y,Z,G,N,Xi,Yi,Zi,C0,D,T);

This can be be used to upward/downward continue gravity observations and simultaneously grid the data.

Cite As

Jack (2022). griddataLSC (https://www.mathworks.com/matlabcentral/fileexchange/57342-griddatalsc), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2015a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!