A sampling-based algorithm for the Voigt/complex error function
This function file computes the complex error function (also known as the Faddeeva function) by using a new method of sampling based on incomplete cosine expansion of the sinc function [1, 2]. External domain is computed by the Laplace continued fraction [3]. The description of the algorithm is presented in the work [4].
---------------------
REFERENCES
[1] S. M. Abrarov and B. M. Quine, Appl. Math. Comput., 258 (2015) 425-435.
https://doi.org/10.1016/j.amc.2015.01.072
[2] S. M. Abrarov and B. M. Quine, J. Math. Research, 7 (2) (2015) 163-174.
https://doi.org/10.5539/jmr.v7n2p163
[3] W. Gautschi, SIAM J. Numer. Anal., 7 (1) (1970) 187-198.
https://doi.org/10.1137/0707012
[4] S. M. Abrarov, B. M. Quine and R. K. Jagpal, Appl. Numer. Math., 129 (2018) 181-191.
https://doi.org/10.1016/j.apnum.2018.03.009
Cite As
Sanjar Abrarov (2026). A sampling-based algorithm for the Voigt/complex error function (https://au.mathworks.com/matlabcentral/fileexchange/66752-a-sampling-based-algorithm-for-the-voigt-complex-error-function), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- MATLAB > Mathematics > Numerical Integration and Differential Equations > Ordinary Differential Equations >
Tags
Acknowledgements
Inspired: The Voigt/complex error function by vectorized interpolation
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0.0 | Minor correction in title.
|
