Streaming Spectral Proper Orthogonal Decomposition
A streaming algorithm to compute the spectral proper orthogonal decomposition (SPOD) of stationary random processes. As new data becomes available, an incremental update of the truncated eigenbasis of the estimated cross-spectral density (CSD) matrix is performed. The algorithm requires access to only one temporal snapshot of the data at a time and converges orthogonal sets of SPOD modes at discrete frequencies that are optimally ranked in terms of energy. The algorithm’s low memory requirement enables real-time deployment and allows for the convergence of second-order statistics from arbitrarily long streams of data.
A detailed description of the algorithm and the example (high-fidelity numerical simulation data of a turbulent jet) can be found in:
Schmidt, O. T., and A. Towne. “An Efficient Streaming Algorithm for Spectral Proper Orthogonal Decomposition.” Computer Physics Communications, Nov. 2018, https://doi.org/10.1016/j.cpc.2018.11.009
Cite As
Schmidt, Oliver T., and Aaron Towne. “An Efficient Streaming Algorithm for Spectral Proper Orthogonal Decomposition.” Computer Physics Communications, Elsevier BV, Nov. 2018, doi:10.1016/j.cpc.2018.11.009.
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Signal Processing > Signal Processing Toolbox > Transforms, Correlation, and Modeling > Transforms > Discrete Fourier and Cosine Transforms > Fast Fourier Transforms >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
aux
Version | Published | Release Notes | |
---|---|---|---|
1.0.0 |