Lagrange Differentiator

The digital differentiator from the Lagrange interpolation.
2.4K Downloads
Updated 22 Jun 2005

No License

The digital differentiator from the Lagrange interpolation.
It is equivalent to the maximally flat low-pass digital differentiator,
or the degenerated form of Savitzky-Golay digital differentiator.

Author:
Jianwen Luo <luojw@ieee.org> 2006-06-17
Department of Biomedical Engineering,
Tsinghua University, Beijing 100084, P. R. China

References:
[1] Carlsson B.
Maximum Flat Digital Differentiator,
Electron. Lett. 1991, 27(8): 675-677.
[2] Kumar B, Roy S C D.
Coefficients of Maximally Linear, Fir Digital Differentiators for Low-Frequencies,
Electron. Lett. 1988, 24(9): 563-565.
[3] Selesnick I W.
Maximally flat low-pass digital differentiators,
IEEE Trans. Circuits Syst. II-Analog Digit. Signal Process. 2002, 49(3): 219-223.
[4] Khan I R, Okuda M, Ohba R.
Design of FIR digital differentiators using maximal linearity constraints,
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2004, E87A(8): 2010-2017.
[5] Luo J W, Ying K, He P, Bai J.
Properties of Savitzky-Golay digital differentiators,
Digit. Signal Prog. 2005, 15(2): 122-136.
[6] Luo J W, Ying K, Bai J.
Savitzky-Golay smoothing and differentiation filter for even number da,
Signal Process. 2005, 85(7): 1429-1434

Cite As

Jianwen Luo (2024). Lagrange Differentiator (https://www.mathworks.com/matlabcentral/fileexchange/7865-lagrange-differentiator), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R14SP1
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0.0

correct a typo.