Lagrange Differentiator
No License
The digital differentiator from the Lagrange interpolation.
It is equivalent to the maximally flat low-pass digital differentiator,
or the degenerated form of Savitzky-Golay digital differentiator.
Author:
Jianwen Luo <luojw@ieee.org> 2006-06-17
Department of Biomedical Engineering,
Tsinghua University, Beijing 100084, P. R. China
References:
[1] Carlsson B.
Maximum Flat Digital Differentiator,
Electron. Lett. 1991, 27(8): 675-677.
[2] Kumar B, Roy S C D.
Coefficients of Maximally Linear, Fir Digital Differentiators for Low-Frequencies,
Electron. Lett. 1988, 24(9): 563-565.
[3] Selesnick I W.
Maximally flat low-pass digital differentiators,
IEEE Trans. Circuits Syst. II-Analog Digit. Signal Process. 2002, 49(3): 219-223.
[4] Khan I R, Okuda M, Ohba R.
Design of FIR digital differentiators using maximal linearity constraints,
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2004, E87A(8): 2010-2017.
[5] Luo J W, Ying K, He P, Bai J.
Properties of Savitzky-Golay digital differentiators,
Digit. Signal Prog. 2005, 15(2): 122-136.
[6] Luo J W, Ying K, Bai J.
Savitzky-Golay smoothing and differentiation filter for even number da,
Signal Process. 2005, 85(7): 1429-1434
Cite As
Jianwen Luo (2024). Lagrange Differentiator (https://www.mathworks.com/matlabcentral/fileexchange/7865-lagrange-differentiator), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Signal Processing > Signal Processing Toolbox > Transforms, Correlation, and Modeling > Correlation and Convolution >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 | correct a typo. |