MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
  Register to watch video
  • Description
  • Related Resources

Determining Mechanical Loads for Wind Turbines

From the series: Developing Wind Power Systems Using MATLAB and Simulink

Steve Miller, MathWorks

Determining the mechanical loads a wind turbine experiences is a complex process that requires more than just a model of the mechanical system. To accurately predict maximum loads, deflections, and oscillations, the entire system must be modeled in one environment. Increasing the fidelity of the model by incorporating flexible bodies is important when examining the effects of vibrations on the system. Engineers must also have the ability to model custom components in order to innovate and to control the level of fidelity of the model.

The model of a complete wind turbine (including mechanical, electrical and hydraulic systems) will be used to show:

• How to build 3-D mechanical system models in the Simulink environment using multibody methods, and directly integrate them with models of hydraulic and electrical systems
• Two methods of incorporate flexible bodies into your model
• How to model custom physical components using the Simscape language
• Two methods for modeling the aerodynamic forces on the wind turbine, including the effects of induced velocity
• How to accelerate load testing by producing a standalone executable from the model and use it to run load tests on separate machines

These points will be illustrated with demonstrations using the model and the simulation software. Experience with MATLAB and Simulink is helpful, but not required to learn from this webinar.

You can download the model used in this webinar from MATLAB Central.

Note: Simulink Verification and Validation transitioned to Simulink Check, Simulink Coverage, and Simulink Requirements in R2017b.

Recorded: 15 May 2009

Related Products

  • Simscape Multibody
  • Simscape
  • Simulink Check
  • Simulink Report Generator
  • Simulink Coverage
  • Simulink Requirements

Feedback

Featured Product

Simscape Multibody

  • Request Trial
  • Get Pricing

Up Next:

Engineers designing yaw and pitch actuators for wind turbines need to take into account many of the other components in the overall system to produce an optimized design. Selecting a technology requires doing tradeoff studies in early stages to deter
35:52
Designing Pitch and Yaw Actuators for Wind Turbines
View full series (4 Videos)

Related Videos:

27:12
Model-Based Design of a Wind Turbine
3:53
Simscape Language: Mechanical Example
53:06
Modeling a Wind Turbine Using MathWorks Tools
32:45
Model-Based Design for DO-178C Software Development with...
30:05
Best Practices for DO-178 Compliant Software using...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Contact Sales
  • About MathWorks

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

  • Select a Web Site United States
  • Patents
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation