MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
  Register to watch video
  • Description
  • Related Resources

Spatial Multiplexing and Hybrid Beamforming for 5G Wireless Communications

Rick Gentile, MathWorks

Overview

Increasing demand for higher data rates and channel capacity drives the need to use the available spectrum more efficiently. As a result, 5G wireless systems will use millimeter wave (mmWave) frequency bands to take advantage of wider available bandwidth. In addition, 5G systems deploy large scale antenna arrays to mitigate severe propagation loss in the mmWave band. However, these configurations bring their unique technical challenges.

Spatial multiplexing can be used to create multiple subchannels in the scatterer rich environment so multiple data streams can be transmitted and recovered independently. This is achieved by applying a set of precoding and combining weights derived from the channel matrix. With large antenna arrays, it is not always practical due to cost and power budgets, to apply digital weights on each antenna element. Hybrid beamforming can be used to address this issue.

Highlights

In this webinar, we will show how to:

  • Develop an antenna array and visualizing the geometry, 2D and 3D directivity, and grating lobes
  • Import antenna patterns to increase model fidelity
  • Design spatial multiplexing system to increase channel capacity with MIMO operations
  • Partition beamforming function between the RF and digital domains in hybrid beamforming architectures
  • Design array architectures, generate RF phase shifts and digital complex weights, and evaluate the results

About the Presenter

Rick Gentile focuses on phased array, signal processing, and sensor fusion applications at MathWorks. Prior to joining MathWorks, Rick was a Radar Systems Engineer at MITRE and MIT Lincoln Laboratory, where he worked on the development of many large radar systems. Rick also was a DSP Applications Engineer at Analog Devices where he led embedded processor and system level architecture definitions for high performance signal processing systems. Rick co-authored the text “Embedded Media Processing”. He received a B.S. in Electrical and Computer Engineering from the University of Massachusetts, Amherst and an M.S. in Electrical and Computer Engineering from Northeastern University, where his focus areas of study included Microwave Engineering, Communications, and Signal Processing.

Recorded: 21 Jun 2018

Related Products

  • Phased Array System Toolbox
  • Antenna Toolbox
  • Communications Toolbox
  • LTE Toolbox
  • RF Blockset

Feedback

Featured Product

Phased Array System Toolbox

  • Request Trial
  • Get Pricing

Up Next:

26:00
Radar System Modeling and Simulation for Automotive...

Related Videos:

4:59
Using Apps for Phased Array System Design and Analysis
57:39
Accelerating Simulation for Communications Applications
29:58
Design of Wireless MIMO Systems: From RF Specifications to...
41:18
Designing Vehicle-Mounted Communications Systems with...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Contact Sales
  • About MathWorks

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

  • Select a Web Site United States
  • Patents
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation