Main Content

cheb1ap

Chebyshev Type I analog lowpass filter prototype

Description

[z,p,k] = cheb1ap(n,Rp) returns the poles and gain of an order n Chebyshev Type I analog lowpass filter prototype with Rp dB of ripple in the passband.

example

Examples

collapse all

Design a 6th-order Chebyshev Type I analog lowpass filter with 3 dB of ripple in the passband. Display its magnitude and phase responses.

[z,p,k] = cheb1ap(6,3);       % Lowpass filter prototype
[num,den] = zp2tf(z,p,k);     % Convert to transfer function form
freqs(num,den)                % Frequency response of analog filter

Figure contains 2 axes objects. Axes object 1 with xlabel Frequency (rad/s), ylabel Phase (degrees) contains an object of type line. Axes object 2 with xlabel Frequency (rad/s), ylabel Magnitude contains an object of type line.

Input Arguments

collapse all

Filter order, specified as an integer.

Data Types: single | double

Passband ripple, specified as a scalar in decibels.

Data Types: single | double

Output Arguments

collapse all

Zeros of the filter, returned as a matrix.

Poles of the filter, returned as an n-length column vector.

Gain of the filter, returned as a scalar. z is an empty matrix because no zeros exist for this filter design.

Algorithms

Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband. The poles are evenly spaced about an ellipse in the left half plane. The Chebyshev Type I passband edge angular frequency ω0 is set to 1.0 for a normalized result. This value is the frequency at which the passband ends. The filter has a magnitude response of 10–Rp/20.

The transfer function is given by

H(s)=z(s)p(s)=k(sp(1))(sp(2))(sp(n)).

References

[1] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons, 1987.

Extended Capabilities

Version History

Introduced before R2006a

Go to top of page