How to change it be to multi-objective pso (for FOPID)? Can anyone help me?

4 views (last 30 days)
The program below is a single-objective pso (for fractional order pid). ( attach file)
How to change it be to multi-objective pso (for FOPID)?
%%%%%% Tunning of FOPID controller using Particle Swarm Optimization
%%% %% Initialization
clc
clear
n = 15; % Size of the swarm " no of birds "
bird_setp = 3; % Maximum number of "birds steps"
dim = 15; % Dimension of the problem
c2 = 2.1; % PSO parameter C1
c1 = 1.2; % PSO parameter C2
w =0.9; % pso momentum or inertia
fitness=zeros(n,bird_setp);
%-----------------------------%
% initialize the parameter %
%-----------------------------%
R1 = rand(dim, n);
R2 = rand(dim, n);
current_fitness =zeros(n,1);
%------------------------------------------------%
% Initializing swarm and velocities and position %
%------------------------------------------------%
current_position = rand(dim, n);
velocity = .3*rand(dim, n) ;
local_best_position = current_position ;
%-------------------------------------------%
% Evaluate initial population %
%-------------------------------------------%
for i = 1:n
Kp1 = current_position(1,i); Ki1 = current_position(2,i); Kd1 = current_position(3,i);
Kp2 = current_position(4,i); Ki2 = current_position(5,i); Kd2 = current_position(6,i);
Kp3 = current_position(7,i); Ki3 = current_position(8,i); Kd3 = current_position(9,i);
lam1 = current_position(10,i); mu1 = current_position(11,i);
lam2 = current_position(12,i); mu2 = current_position(13,i);
lam3 = current_position(14,i); mu3 = current_position(15,i);
simopt = simset('solver','ode45'); % Initialize sim options
[tout,xout,yout] = sim('Model',[0 100],simopt);
F = sum(e2);
current_fitness(i) = F;
end
local_best_fitness = current_fitness ;
[global_best_fitness,g] = min(local_best_fitness) ;
for i=1:n
globl_best_position(:,i) = local_best_position(:,g) ;
end
%-------------------%
% VELOCITY UPDATE %
%-------------------%
velocity = w *velocity + c1*(R1.*(local_best_position-current_position)) + c2*(R2.*(globl_best_position-current_position));
%------------------%
% SWARMUPDATE %
%------------------%
current_position = current_position + velocity ;
for i = 1:n
for j = 1:n
if current_position(i,j)>1
current_position(i,j) = 1;
elseif current_position(i,j)<0
current_position(i,j) = 0;
end
end
end
%------------------------%
% evaluate anew swarm %
%------------------------%
%% Main Loop
iter = 0 ; % Iterations’counter
while ( iter < bird_setp )
iter = iter + 1;
for i = 1:n
Kp1 = current_position(1,i); Ki1 = current_position(2,i); Kd1 = current_position(3,i);
Kp2 = current_position(1,i); Ki2 = current_position(2,i); Kd2 = current_position(3,i);
Kp3 = current_position(1,i); Ki3 = current_position(2,i); Kd3 = current_position(3,i);
lam1 = current_position(10,i); mu1 = current_position(11,i);
lam2 = current_position(12,i); mu2 = current_position(13,i);
lam3 = current_position(14,i); mu3 = current_position(15,i);
simopt = simset('solver','ode45'); % Initialize sim options
[tout,xout,yout] = sim('Model',[0 100],simopt);
F = sum(e2);
current_fitness(i) = F;
end
for i = 1 : n
if current_fitness(i) < local_best_fitness(i)
local_best_fitness(i) = current_fitness(i);
local_best_position(:,i) = current_position(:,i) ;
end
end
[current_global_best_fitness,g] = min(local_best_fitness);
if current_global_best_fitness < global_best_fitness
global_best_fitness = current_global_best_fitness;
for i=1:n
globl_best_position(:,i) = local_best_position(:,g);
end
end
velocity = w *velocity + c1*(R1.*(local_best_position-current_position)) + c2*(R2.*(globl_best_position-current_position));
current_position = current_position + velocity;
for i = 1:n
for j = 1:n
if current_position(i,j)>1
current_position(i,j) = 1;
elseif current_position(i,j)<0
current_position(i,j) = 0;
end
end
end
sprintf('The value of interation iter %3.0f ', iter )
end % end of while loop its mean the end of all step that the birds move it
xx=fitness(:,3);
[Y,I] = min(xx);
current_position(:,I)
%

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!