How do I get formula for the nth term of this on matlab?
10 views (last 30 days)
Show older comments
sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...))))
I know this limit is 3...but I need to get matlab to give me the first 40 terms. I am confused on how to code it.
3 Comments
Alberto
on 24 Sep 2014
I think the sucession should be like this:
a_1=sqrt(1)
a_2=sqrt(1 + 2*sqrt(1))
a_3=sqrt(1 + 2*sqrt(1 + 3*sqrt(1)))
...
Has the same limit and doesn't need initial value for recursion.
Accepted Answer
Image Analyst
on 24 Sep 2014
What would be inside the parentheses of the 40th sqrt()? Just a 1?
Try a for loop and see what happens
s(40) = 1;
for k = 39 : -1 : 1
s(k) = k * sqrt(s(k+1)+1)
end
8 Comments
Image Analyst
on 25 Sep 2014
There is no "a". If you want, put a semicolon at the end of the s(k) line and just put s on its own line after the loop to have it print out the whole array.
More Answers (3)
Stephen23
on 24 Sep 2014
Edited: Stephen23
on 24 Sep 2014
You could try writing a for loop. The loop would just need to increment down itr = 40:-1:1, and calculates itr*sqrt(1+last_val) , with last_value defined before the loop (what value?).
Check it first with a small number of iterations first (1, 2, 3), to confirm that it calculates the expected values. Then try it with more iterations.
0 Comments
Roger Stafford
on 24 Sep 2014
Edited: Roger Stafford
on 24 Sep 2014
It doesn't matter what you initialize it at, the limit as n approaches infinity is always 2, not 3.
Correction: You were right. I was in error. The limit is always 3 no matter what your initial value is.
0 Comments
Roger Stafford
on 25 Sep 2014
Edited: Roger Stafford
on 25 Sep 2014
Since I made an error in my first answer, here is a bit more information. The problem can be expressed this way:
x(1) = sqrt(1+2*x(2))
x(2) = sqrt(1+3*x(3))
x(3) = sqrt(1+4*x(4))
...
x(n-1) = sqrt(1+n*x(n))
Now suppose x(n) were equal to n+2. Then
x(n-1) = sqrt(1+n*(n+2)) = sqrt((n+1)^2) = n+1
x(n-2) = sqrt(1+(n-1)*(n+1)) = sqrt(n^2) = n
...
x(1) = 3
However, if x(n) is not equal to n+2, express its ratio to n+2 as x(n)/(n+2) = 1+e(n). Then we have
1+e(n-1) = x(n-1)/(n+1)
= sqrt((1+n*(n+2)*(1+e(n)))/(n+1)^2)
= sqrt(1+n*(n+2)/(n+1)^2*e(n))
e(n-1) = sqrt(1+n*(n+2)/(n+1)^2*e(n)) - 1
This will always approach zero for sufficiently large n to start with and hence the limit for x(1) must be 3 no matter what the initial value is.
0 Comments
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!