Clear Filters
Clear Filters

Training Network stopping automatically after 3 iteration without showing any error.

10 views (last 30 days)
tspan = 0:0.001:10;
y0 = 0;
[t,y] = ode45(@(t,y) t^2+2, tspan, y0);
T=t(1:0.9*end)
Y=y(1:0.9*end)
x=t(0.9*end+1:end)
v=y(1+0.9*end:end)
layer = functionLayer((@(X) X./(1 -X^2)))
layers = [
sequenceInputLayer(1)
fullyConnectedLayer(1)
tanhLayer
functionLayer(((@(t) t./(1 -t.^2))),Description="softsign")
fullyConnectedLayer(1)
tanhLayer
functionLayer(((@(t) t./(1 -t.^2))),Description="softsign")
regressionLayer]
options = trainingOptions('adam', ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',5, ...
'miniBatchSize',20,.....
'VerboseFrequency',1,...
'ValidationPatience',Inf,...
'MaxEpochs',100, ...
'Plots','training-progress')
net = trainNetwork(T',Y',layers,options);
ypre=predict(net,tspan);
plot(ypre)
plot(y)

Answers (1)

Prateek Rai
Prateek Rai on 22 Feb 2022
Hi,
Training of the network stopped because training loss is NaN. This implies that the predictions using the output network might contain NaN values.
On analyzing network, I found that size of the all the layers is 1*1*1 which is why NaN values are coming.
You might want to recheck the dimension of the layers of the network using:
analyzeNetwork(layers)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!