unrecognized function or variable for spring mass damper with forcing function
3 views (last 30 days)
Show older comments
Alexander Salas
on 9 Dec 2021
Answered: Walter Roberson
on 9 Dec 2021
Hello,
I am trying to run a springn mass damper with a forcing function. I can run it without the forcing function but when I add the sin*t components I get an unrecognized function or variable error. I am still new to matlab and am having a hard time.
clear
close all
% M*xddot + C*xdot + K*x = F(t)
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0;0 Icg];
C = [(c1+c2) (c1*l1-c2*l2);(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2);(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2;k1*l1 -k2*l2];
Brdot = [c1 c2;c1*l1 -c2*l2];
r = [(0.01*sin(17.453*t)) (0.01*sin(17.453*t-pi))]';
r1 = [(0.17453*cos(17.453*t-pi)) (-0.17453*cos(17.453*t))]';
%%%%%%%%%%%
F = @(t) (Br*r) + (Brdot*r1);
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('y1','y2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('theta1','theta2')
xlabel('Time (s)')
ylabel('Velocity (rad)')
0 Comments
Accepted Answer
Walter Roberson
on 9 Dec 2021
clear
close all
% M*xddot + C*xdot + K*x = F(t)
% System parameters
m1 = 2000; Icg = 2500; % kg
c1 = 3000; c2 = 3000; % kg/s
k1 = 30000; k2 = 30000; % N/m
l1 = 1; l2 = 1.5;
M = [m1 0;0 Icg];
C = [(c1+c2) (c1*l1-c2*l2);(c1*l1-c2*l2) ((c2*l2^2)+(c1*l1^2))];
K = [(k1+k2) (k1*l1-k2*l2);(k1*l1-k2*l2) ((k2*l2^2)+(k1*l1^2))];
Br = [k1 k2;k1*l1 -k2*l2];
Brdot = [c1 c2;c1*l1 -c2*l2];
r = @(t) [(0.01*sin(17.453*t)) (0.01*sin(17.453*t-pi))]';
r1 = @(t) [(0.17453*cos(17.453*t-pi)) (-0.17453*cos(17.453*t))]';
%%%%%%%%%%%
F = @(t) (Br*r(t)) + (Brdot*r1(t));
% Time grid
t0 = 0; tf = 10; dt = 0.01; t = t0:dt:tf;
% Set initial state and integrate equations of motion
s0 = [1 1 0 0]';
f = @(t,s) [s(3);s(4);M\F(t)-M\C*[s(3) s(4)]'-M\K*[s(1) s(2)]'];
[t,s] = ode45(f,t,s0);
% Plot system motion
figure
subplot(211),plot(t,s(:,1),t,s(:,2),'LineWidth',2)
grid minor
legend('y1','y2')
xlabel('Time (s)')
ylabel('Displacements (m)')
title('System Dynamic Response')
subplot(212),plot(t,s(:,3),t,s(:,4),'LineWidth',2)
grid minor
legend('theta1','theta2')
xlabel('Time (s)')
ylabel('Velocity (rad)')
0 Comments
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!