
Perform cross co-relation to find best fit
    5 views (last 30 days)
  
       Show older comments
    
Hello Community,
I have two signals s_acti.mat and phs1.mat.
how do i find the time interval of s_acti that best fits with phs1.
i intend to perform cross corelation and find the suitable time frame in s_acti that best fits with phs1.
0 Comments
Answers (1)
  Mathieu NOE
      
 on 13 Dec 2021
        hello 
the two signals have a slightly (but constant) slopes , so the best estimation of time delta is measured at half the amplitude 
>> dt = - t0_neg1 + t0_neg2
dt =   1.1076e-08

code : 
clc
clearvars
load('s_acti.mat');
time1 = s_acti(:,1);
data1 = s_acti(:,2);
load('phs1.mat');
time2 = phs1(:,1);
data2 = phs1(:,2);
%% my code below         
threshold = min(data1)/2; % your value here
[t0_pos1,s0_pos1,t0_neg1,s0_neg1]= crossing_V7(data1,time1,threshold,'linear'); % positive (pos) and negative (neg) slope crossing points 
% ind => time index (samples)
% t0 => corresponding time (x) values 
% s0 => corresponding function (y) values , obviously they must be equal to "threshold"
[t0_pos2,s0_pos2,t0_neg2,s0_neg2]= crossing_V7(data2,time2,threshold,'linear'); % positive (pos) and negative (neg) slope crossing points 
figure(4)
plot(time1,data1,time2,data2,time1,threshold*ones(size(time1)),'k--',t0_neg1,s0_neg1,'dr',t0_neg2,s0_neg2,'dg','linewidth',2,'markersize',12);grid on
legend('signal 1','signal 2','threshold','negative slope crossing points signal 1','negative slope crossing points signal 2');
dt = - t0_neg1 + t0_neg2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [t0_pos,s0_pos,t0_neg,s0_neg] = crossing_V7(S,t,level,imeth)
% [ind,t0,s0,t0close,s0close] = crossing_V6(S,t,level,imeth,slope_sign) % older format
% CROSSING find the crossings of a given level of a signal
%   ind = CROSSING(S) returns an index vector ind, the signal
%   S crosses zero at ind or at between ind and ind+1
%   [ind,t0] = CROSSING(S,t) additionally returns a time
%   vector t0 of the zero crossings of the signal S. The crossing
%   times are linearly interpolated between the given times t
%   [ind,t0] = CROSSING(S,t,level) returns the crossings of the
%   given level instead of the zero crossings
%   ind = CROSSING(S,[],level) as above but without time interpolation
%   [ind,t0] = CROSSING(S,t,level,par) allows additional parameters
%   par = {'none'|'linear'}.
%	With interpolation turned off (par = 'none') this function always
%	returns the value left of the zero (the data point thats nearest
%   to the zero AND smaller than the zero crossing).
%
% check the number of input arguments
error(nargchk(1,4,nargin));
% check the time vector input for consistency
if nargin < 2 | isempty(t)
	% if no time vector is given, use the index vector as time
    t = 1:length(S);
elseif length(t) ~= length(S)
	% if S and t are not of the same length, throw an error
    error('t and S must be of identical length!');    
end
% check the level input
if nargin < 3
	% set standard value 0, if level is not given
    level = 0;
end
% check interpolation method input
if nargin < 4
    imeth = 'linear';
end
% make row vectors
t = t(:)';
S = S(:)';
% always search for zeros. So if we want the crossing of 
% any other threshold value "level", we subtract it from
% the values and search for zeros.
S   = S - level;
% first look for exact zeros
ind0 = find( S == 0 ); 
% then look for zero crossings between data points
S1 = S(1:end-1) .* S(2:end);
ind1 = find( S1 < 0 );
% bring exact zeros and "in-between" zeros together 
ind = sort([ind0 ind1]);
% and pick the associated time values
t0 = t(ind); 
s0 = S(ind);
if ~isempty(ind)
    if strcmp(imeth,'linear')
        % linear interpolation of crossing
        for ii=1:length(t0)
            %if abs(S(ind(ii))) >= eps(S(ind(ii)))    % MATLAB V7 et +
            if abs(S(ind(ii))) >= eps*abs(S(ind(ii)))    % MATLAB V6 et -    EPS * ABS(X)
                % interpolate only when data point is not already zero
                NUM = (t(ind(ii)+1) - t(ind(ii)));
                DEN = (S(ind(ii)+1) - S(ind(ii)));
                slope =  NUM / DEN;
                slope_sign(ii) = sign(slope);
                t0(ii) = t0(ii) - S(ind(ii)) * slope;
                s0(ii) = level;
            end
        end
    end
    % extract the positive slope crossing points 
    ind_pos = find(sign(slope_sign)>0);
    t0_pos = t0(ind_pos);
    s0_pos = s0(ind_pos);
    % extract the negative slope crossing points 
    ind_neg = find(sign(slope_sign)<0);
    t0_neg = t0(ind_neg);
    s0_neg = s0(ind_neg);
else
    % empty output
    ind_pos = [];
    t0_pos = [];
    s0_pos = [];
    % extract the negative slope crossing points 
    ind_neg = [];
    t0_neg = [];
    s0_neg = [];
end
end   
6 Comments
  Mathieu NOE
      
 on 14 Mar 2022
				hello Sajid
good news and happy that you could find a solution to your problem 
all the best
M
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


