ResNet-50 training problem

7 views (last 30 days)
Why does the validation accuracy in the red circle in the figure suddenly rise?

Accepted Answer

Abolfazl Chaman Motlagh
Abolfazl Chaman Motlagh on 12 Dec 2021
this note is from official MATLAB documentation for trainingOptions , i think it's exactly what you're looking for.
"When training finishes, view the Results showing the final validation accuracy and the reason that training finished. The final validation metrics are labeled Final in the plots. If your network contains batch normalization layers, then the final validation metrics can different to the validation metrics evaluated during training. This is because the mean and variance statistics used for batch normalization can be different after training completes. For example, if the 'BatchNormalizationStatisics' training option is 'population', then after training, the software finalizes the batch normalization statistics by passing through the training data once more and uses the resulting mean and variance. If the 'BatchNormalizationStatisics' training option is 'moving', then the software approximates the statistics during training using a running estimate and uses the latest values of the statistics. "
So it seems in your case network has better performance on validation data when batch normalization parameters is finilized after training finished.

More Answers (0)

Categories

Find more on Deep Learning with Time Series and Sequence Data in Help Center and File Exchange

Products


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!