Plot spectra and spectrogram of acceleration data
28 views (last 30 days)
Show older comments
Louise Wilson
on 13 Dec 2021
Commented: Mathieu NOE
on 16 Feb 2022
I have acceleration data for three planes (X,Y,Z) which is recorded using an accelerometer connected to a recorder (referred to as board).
An example .wav file is here: https://drive.google.com/file/d/1vC8bE4NbvG8iVFwrqBr2LccW3c7N9G7w/view?usp=sharing
I would like to plot the spectra and spectrogram of each plane.
I tried using this question as a starting point to work on the outputs for one plane. However, I assume this question is specific to terrestrial measurements of acceleration and my data was collected using an accelerometer deployed in the sea at a depth of ~ 8m. The example file is 5 minutes long and contains the sound of a boat passing by.
filename='805367873.210811101406.wav'; %wav file (5 minutes long)
%Board and vector sensor sensitivities
bd_sen = 1.363; % 5.7-3 dB (1.363 is Volts/unit)
bd_att = 4 % 12.04 dB
vs_sen_x = 10; %Sensitivies for vector sensor #166 (V/g)
vs_sen_z = 10.2;
[D, fs] = audioread(filename);
%fs is 48000
%Calibration values
x_sen = (bd_att*bd_sen/(9.81*vs_sen_x)); %ms^-2/unit
z_sen = (bd_att*bd_sen/(9.81*vs_sen_z)); %ms^-2/unit
%Apply calibration and detrend
example.xacc{1} = detrend(D(:, 1)*x_sen); %x
example.zacc{1} = detrend(D(:, 3)*z_sen); %z
%FFT parameters
nfft=1624;
noverlap=round(0.5*nfft);
w=hanning(nfft);
spectrogram_dB_scale=80;
samples=length(signal);
Fs=48000;
% Averaged FFT spectrum
[sensor_spectrum,freq]=pwelch(signal,w,noverlap,nfft,fs);
sensor_spectrum_dB=20*log10(sensor_spectrum) %maybe this should be 10*log10(spectrum)?
figure(1),semilogx(freq,sensor_spectrum_dB);grid
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
xlabel('Frequency (Hz)');
%The values here seem too large, and the frequency range is broader than
%I would have expected. I would have expected an upper limit of around 3000
%Hz.
%Spectrogram
[sg,fsg,tsg] = specgram(signal,nfft,Fs,w,noverlap);
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg));
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
figure(2);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
xlabel('Time (s)');ylabel('Frequency (Hz)');
15 Comments
Mathieu NOE
on 16 Feb 2022
hello Louise and welcome back
I guess with datetick it should work :
all the best
Accepted Answer
Bjorn Gustavsson
on 14 Dec 2021
Edited: Bjorn Gustavsson
on 14 Dec 2021
Provided that your data actually spans 5 minutes your sampling-frequency is not 48 kHz, but rather 800 Hz. That changes the output a bit:
fs = (numel(example.x)-1)/5/60;
nfft=1624;
noverlap=round(0.5*nfft);
w=hanning(nfft);
[S,F,T,P] = spectrogram(example.x,w,noverlap,nfft,fs);
pcolor(T,F,log10(abs(S))),shading flat,colormap(turbo),colorbar
if you have band-passed downconverted data this should be adapted, but for that you'll have to explain what is done to the data.
HTH
3 Comments
Bjorn Gustavsson
on 15 Dec 2021
The question for you to resolve first is how many samples do you have from a time-period that is how long and does that match up with your sampling-frequency-setting? If you have base-band samples at 48 kHz then you should have 48000 samples per second (obviously). Does that match up with the length of your data-set, 5 minutes, or 5 seconds? Are fs and Fs identical?
More Answers (0)
See Also
Categories
Find more on Get Started with Signal Processing Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!