why get different values when matlab also use maple for calculation?. Maple vs Matlab??

3 views (last 30 days)
Hi, I have this problem where the maple show very small result but matlab show very large value. I have written the code in Maple and Matlab. I'm working on this from last 4 days and didn't find any result, why this is happening.
Thank you in advance and please share if you know the reason behind this difference.
n,m,omega1 are real numbers n>m, n and m are integer, omega>0, n=m+2, and m is any odd no.s greater then 2.
%%%%%% MATLAB CODE
clc; clear; close;
n=5;m=3;omega1=500;
fun_matlab=(omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
fun_matlab = 6.575169876935467e+209
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% MAPLE CODE
restart; Digits:=500: n:=5: m:=3: omega1:=500:
Fun_maple:=evalf((omega1*GAMMA(n/2)*GAMMA(m/2 + 1)*hypergeom([m/2 + 1], [3/2, 1 - n/2], omega1^2/4))/(2*GAMMA(m/2 + n/2 + 1)) + (omega1*omega1^n*Pi^(1/2)*GAMMA(-n/2)*hypergeom([m/2 + n/2 + 1], [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*GAMMA(n/2 + 3/2)));
Fun_maple := -1.81414220781335980673653067232748014592172464361706594606931258364*10^(-209)

Answers (1)

Walter Roberson
Walter Roberson on 24 Dec 2021
fun_matlab=(omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
n and m are double precision. omega is double precision. The gamma() calls are being evaluated at double precision, and your hypergeom() calls are being evaluated at double precision. Double precision is not accurate enough for your purposes.
  3 Comments
Walter Roberson
Walter Roberson on 24 Dec 2021
Edited: Walter Roberson on 24 Dec 2021
sqrt(pi) was also a problem.
n = sym(5); m = sym(3); omega1 = sym(500);
Pi = sym(pi);
fun_matlab = (omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*Pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
string(fun_matlab)
ans = "(375*pi*((500009*cosh(500))/9 + (124995500*sinh(500))/9))/64 - (97656250000000*pi*((749973*cosh(500))/100000000000 + (1500027*sinh(500))/50000000000000))/9"
double(vpa(fun_matlab,500))
ans = -1.8141e-209
But if your question is whether it can be done in double precision in MATLAB, then I doubt it. The calculation involves cosh(500) and sinh(500) which are about 10^216 and differ by about 10^-218 so you would need more than 434 digits of precision.
John D'Errico
John D'Errico on 24 Dec 2021
Edited: John D'Errico on 24 Dec 2021
Even if you use the symbolic toolbox, with everything in sym form, a large value is still produced, not the infinitessimally small one apparently produced from Maple.
n=sym(5);m=sym(3);omega1=sym(500);
digits 5000
fun_matlab=(omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
vpa(fun_matlab)
ans = 
147748731616237577931448363241910368283180484634000496100665387387718411349283956852373300175539197760922694640142292157562340440898059897980298202574649566231171561333775852154622445545528768308520930015426487.0863498830823765232823480627139222936503715438799464412851830768478983831036296973344755151435098437067437752391294062011452385312004303314656598808096311285145864980219749132556964600592390223455372953776512924490749958419751683873694385571230866979076302422525604930389533068747876362921891153760519734949338592654764531423925140806092090149888536227492888000923032296131366435507730103786420120218859203547085762997974107915729496756974053271088704728638187898053487675232852417616027618083087504497866163187415356170127322059067782083699563325588706621591438750039928022806285962578490840905063417687646547749245326945723557137978260046735238027396283720984590429674805556644098317669576443124441670981410255367029949936182153808843774660839144590472058384441299247528947675139797955621415394375443849053717899771742184755822787852276136646671933818125855174241072254334632780328000036308553314885060950269856196498793393606666552973537267376390169904344484764843074139018715753581572343010303661897945659915499169913394200232588627633151116060080364895158479676748781610745396475483288454825580865090714158662308657557433605382767136806246862020578700099946196284159964726339698164147107673911838790682145013229594511047285781270968596256827862215822470685106782190984432702702292103678892731665019125506501067388591399205113889796260660103182613672477681436818186904010621555251288714279518544719787238937443236444105316445645580057487554891642882034380970041760733794513864168932707249169175791210195487602121674578387737364790653948362659062583097934072705877077753099910766064973233982921766408718971002389585572756382046531800026450420915996862092472014366665093128625844683884456327441995359995094755671454333741849675350716427590968111383719035406523526415695911834748274184820516867436953945826232909105715965078570915320502259126290512818913313877420704218572682678098013431891997814279297049106299858615695633000718423647223430191779836456826387399561401197603771489170131208829096174783189739125052199788092496926022160823952450783800167193276370726798734156072774937990743894401684344358349257183707299693962663094234407332871408932652239299831546036033569381647972573178943603603285044062345759733792302999355908523925112609920030222973338108400713851144586222851232544397308448104164094072898506510345180658593016074656825742076505200914491294932930515431757156180763724847372060149750838118403882740191715431899502315068505631366944030641643501690121612806246148737459079019011461697588684682304825024137240423228904568075148244863590488435547668930028683371712401215740667223044574375329086967484218365017648256496067858651787089022986708050914547128166673766890605616055113216980565492628120034707174699532421909430708906231270732558284176077211389470684737860304877621036480815416371821478981860388735867663688907482445886586092645434987955091586685479870079176675897949627074893006506049330923746770069948742165934949685361114106958051913446978613546980111760801166847989843696233620120806975788957685588627466301934429219151026838394165412383233195831897070116715071389233427085379364706867446529026010399745019822441891854161740931421751154201056135119466746664416844750071721139563638949860033018976611483134988781174161132655870332572971927942261442618504455856570424862372485153118612960613012160427992763177647028380651116798426446740489748995135739230578478850241074209199523193415574664534042638953307613218296751960291588989029302363830433384692526139047220174111234476563765807338907716224456931764504072247961906469436135647032620539821264393670688905897395214825872724945098035540504290787265393716141527743157416854665405241789282709262811613272563251545741502230733996411735405260618237971351153845760880686980364183509484338435610898547857679708341225081738202345854205843954850929323088578413558590272973311256739597131596535276489770634966198619636676421873016780309617942694385009052020922459238733120162841517521185131785617099175720739231119080001279130653248127283004524937165292086986161642139457748796826109422507865015341473582193312793687111771056851880485571822320134311356877918646112101585224167647956238830825405527821711038516391336115291663519502823405367600864820713030936994800507233538386118970758530570795772045625738917259556602078618155992916892902400874609976240131803835137431103875794095842773993781554114441585881767950113635740851107802556554132571379276185542922733305923364985915364089205031022265184845783271795869425922452632788370799186733586905958028872319984373021210084090813772664930277280795406721885484043943658932898059132166540358379662834952435864982834842361303218289109922349437428413854927786478680351267442158088638852896814753016845716837821160566014644165069585212571556756518111206068557838534894630596
double(fun_matlab)
ans = 1.4775e+209
It is different from that which MATLAB produced without the aid of syms though.

Sign in to comment.

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!