how to plot a function on a 3D sphere?
2 views (last 30 days)
Show older comments
N0=100;
r_med=[0.445 0.889 1.445 2];
sigma_g=7;
N_ang=91;
theta = (0:1:360)/180*pi;
phi = (0:1:360)/180*pi;
[x,y]=meshgrid(theta,phi);
Num_r = 50e3;
r = linspace(1,50,Num_r)./2;
I0=1;Q0=0;U0=0;V0=0;
for i = 1:length(r_med)
% [P11(i,:),P12(i,:),P33(i,:),P34(i,:),Qsca_c(i,:),~,~] = ZK_W_Cloud_PhaseFunc(N0,r_med(i),sigma_g,N_ang);
P11_t(i,:) = [P11(i,:) fliplr(P11(i,2:end))];
P12_t(i,:) = [P12(i,:) fliplr(P11(i,2:end))];
P33_t(i,:) = [P33(i,:) fliplr(P11(i,2:end))];
P34_t(i,:) = [P34(i,:) fliplr(P11(i,2:end))];
P1=repmat(P11_t(i,:),length(phi),1);
P2=repmat(P12_t(i,:),length(phi),1);
P3=repmat(P33_t(i,:),length(phi),1);
P4=repmat(P34_t(i,:),length(phi),1);
z = P1.*I0+((P2.*Q0.*cos(2*y))+(P2.*U0.*sin(2*y)));
end
[v,u,w]=sph2cart(x,y,z);
v=z.*cos(y).*cos(x);
u=z.*sin(y).*cos(x);
w=z.*sin(y);
figure,
surf(v,u,w),xlabel('x'),ylabel('y'),zlabel('z')
%set(gca,'zscale','log');
I want to obtain the figure as shown
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/851450/image.png)
However, the output of my code is just a circle
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/851600/image.png)
Please correct me.
2 Comments
Walter Roberson
on 3 Jan 2022
How does this differ from https://www.mathworks.com/matlabcentral/answers/1620195-how-to-plot-a-3d-function?s_tid=srchtitle ?
Answers (1)
Matt J
on 3 Jan 2022
Edited: Matt J
on 3 Jan 2022
My recommendation would be to build these surfaces using the cylinder function, e.g.,
R=1; %radius of circular cross-section
d=1.5; %radius of torus
fn=@(z) 2*R*(z-0.5);
x=fn( linspace(0,1) );
r1=d-sqrt(R^2-x.^2); %inner half surface
r2=d+sqrt(R^2-x.^2); %outer half surface
[X1,Y1,Z1]=cylinder(r1,40);
[X2,Y2,Z2]=cylinder(r2,40);
h(1)=surf(X1, Y1, fn(Z1)); hold on
h(2)=surf(X2, Y2, fn(Z2)); hold off
rotate(h,[1,0,0],90)
axis equal
xlabel X; ylabel Y; zlabel Z;
view(35,30)
5 Comments
See Also
Categories
Find more on Lighting, Transparency, and Shading in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!