Convolution Neural network for regression problems
17 views (last 30 days)
Show older comments
Hi everyone
I want to use CNN for my problem. The existing examples in the MATLAB (Here) provided for images as 4-D arrays but my problem is as follows:
Inputs = N (78000,24)
Output = Y(78000,1)
How can I use the mentioned examples for my problem?
Thanks in advanced.
1 Comment
Accepted Answer
yanqi liu
on 11 Jan 2022
yes,sir,may be use rand data to simulate your application,then you can replace data,such as
clc; clear all; close all;
% Inputs = N (78000,24);
% Output = Y(78000,1);
Inputs = randn(78000,24);
Output = rand(78000,1);
% get input data matrix
XTrain=(reshape(Inputs', [24,1,1,78000]));
YTrain=Output;
layers = [imageInputLayer([24 1 1])
convolution2dLayer([15 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
miniBatchSize = 128;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
3 Comments
More Answers (1)
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!