How to find a proper algorithm to solve this optimal control problem?
25 views (last 30 days)
Show older comments
Hi everyone!
I am trying to find a way to solve this optimal control problem in MATLAB. The function is too complex and the using Hamiltonian in MATLAB couldn't help.The problem describes as below:
p = 100;
a = 0;
b = 0.07;
c = 0.04;
r = 0.005;
z = 0.1;
c0 = 70;
x0 = 0.4;
alpha = 0.005;
beta = 0.006;
gamma = 0.003;
delta = 0.007;
Dx = (alpha + beta*u + (gamma + delta*u)*x)*(1-x); % State Equation
f = ((p - c0*((x0/x)^z))*Dx) - (a + (b*u) + (c*u^2)); % Function inside the integral (Cost function)
% x(t0) = 0.4, x(tf) = free, t0 = 0. tf = 31
Note that the aim is to maximize the function f.
I tried to use fmincon and still the function is too complex to get an answer.
Thanks!
3 Comments
Torsten
on 13 Jan 2022
Sorry, but I have no experience with numerical optimal control.
So I can't give you advise in this respect.
Accepted Answer
Torsten
on 14 Jan 2022
This should give you a start:
%Optimal advertising expenditure in monopoly
%% Constants
p = 100;
a = 0;
b = 0.07;
c = 0.04;
r = 0.005;
z = 0.1;
c0 = 70;
x0 = 0.4;
alpha = 0.005;
beta = 0.006;
gamma = 0.003;
delta = 0.007;
%% State equation (g)
syms x u p1
Dx = (alpha + beta*u + (gamma + delta*u)*x)*(1-x);
%% Cost function inside the integral (f)
f = ((p - c0*((x0/x)^z))*Dx) - (a + (b*u) + (c*u^2));
%% Hamiltonian %lambda_0= 1 (Normal case)
H = f + p1*Dx;
%% Costate equations
Dp1 = -diff(H,x);
%% solve for control u
du = diff(H,u);
sol_u = solve(du,u);
f = subs(f,u,sol_u)
Dp1 = subs(Dp1,u,sol_u)
rhs = [f;Dp1];
% Turn to numerical computation
fun = matlabFunction(rhs)
tmesh = linspace(0,31,150);
guess = @(x)[0.4*(1-x/31)+x/31;1]
solinit = bvpinit(tmesh,guess);
bvpfcn = @(t,y)fun(y(2),y(1));
bcfcn = @(ya,yb)[ya(1)-0.4;yb(1)-1];
sol = bvp4c(bvpfcn, bcfcn, solinit)
More Answers (1)
Walter Roberson
on 13 Jan 2022
You did not say what you wanted to optimzie with respect to. If you wanted to optimize with respect to u, then see solu below.
If you wanted to optimize with respect to x (in terms of u) then I will need to do more testing.
syms x u
p = 100;
a = 0;
b = 0.07;
c = 0.04;
r = 0.005;
z = 0.1;
c0 = 70;
x0 = 0.4;
alpha = 0.005;
beta = 0.006;
gamma = 0.003;
delta = 0.007;
Dx = (alpha + beta*u + (gamma + delta*u)*x)*(1-x); % State Equation
f = ((p - c0*((x0/x)^z))*Dx) - (a + (b*u) + (c*u^2)); % Function inside the integral (Cost function)
f
Dfu = diff(f,u)
string(Dfu)
solu = simplify(solve(Dfu, u))
Dfx = diff(f,x)
string(Dfx)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!