I am having trouble doing integration for the following code.
1 view (last 30 days)
Show older comments
Md. Golam Zakaria
on 1 Feb 2022
Answered: Walter Roberson
on 1 Feb 2022
I am having the following warning.
Warning: Infinite or Not-a-Number value encountered.
> In integralCalc/iterateScalarValued (line 349)
In integralCalc/vadapt (line 132)
In integralCalc (line 83)
In integral (line 88)
In Q2 (line 17)
clc
clear all
Fs= 2.16*10^-5*pi; % Geometrical Factor
h= 6.626*10^-34; % Plancks Constant
c= 3*10^8; % Speed of light
K = 1.38*10^-23; % Boltzmanns Constant
Ts=5760; % Temparature of the sun
E=0:0.5:4;
bs=((2*Fs)/((h^3)*(c^2))).*(E.^2./(exp(E./((K*Ts)-1))));
fun= @(E)(E.*((2*Fs)/((h^3)*(c^2))).*(E.^2./(exp(E./((K*Ts)-1)))));
Ps = integral (fun,0,Inf) ;
figure(2)
plot(E,Ps)
0 Comments
Accepted Answer
Star Strider
on 1 Feb 2022
The warning is likely the result of the second term, that becomes Inf at higher values.
Fs= 2.16*10^-5*pi; % Geometrical Factor
h= 6.626*10^-34; % Plancks Constant
c= 3*10^8; % Speed of light
K = 1.38*10^-23; % Boltzmanns Constant
Ts=5760; % Temparature of the sun
fun= @(E)(E.*((2*Fs)/((h^3)*(c^2))).*(E.^2./(exp(E./((K*Ts)-1)))));
Result1 = fun(0)
Result2 = fun(realmax)
Check = @(E) E.^2/exp(E./((K*Ts)-1))
Check(realmax)
I am not certain that there is any solution for that, other than restricting the upper integration limit to something smaller.
.
0 Comments
More Answers (1)
Walter Roberson
on 1 Feb 2022
Q = @(v) sym(v);
Fs = Q(2.16)*Q(10^-5)*Q(pi) % Geometrical Factor
h = Q(6.626)*Q(10^-34) % Plancks Constant
c = Q(3)*Q(10^8) % Speed of light
K = Q(1.38)*Q(10^-23) % Boltzmanns Constant
Ts = Q(5760) % Temparature of the sun
E = Q(0):Q(0.5):Q(4);
bs = ((2*Fs)/((h^3)*(c^2))).*(E.^2./(exp(E./((K*Ts)-1))));
fun = @(E)(E.*((2*Fs)/((h^3)*(c^2))).*(E.^2./(exp(E./((K*Ts)-1)))));
syms x b real
assume(b >= 0)
Ps = int(fun(x), x, 0, b)
limit(Ps, b, inf)
0 Comments
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!