creating a string multiple string filter on multiple columns

3 views (last 30 days)
Hello, I have a n x m (row-column data) that I previously was able to do some basic analysis on.
How can I create a multiple "string filter" for each column and remove the unwanted "strings" , after filtering I then need to concatenate the column after removing the unwanted strings.
data = randn(n,m);
results = cell(1,m);
for jj = 1:m
results{jj} = perform_analysis(data(:,jj));
end
Example:
First Filter is AA, BB, CC, DD (independent of each other) then concatenate "some data" on the column x.
Continue this type of filter until all columns have removed the unwanted strings while the data is concatenated for all columns.
Thanks...
  3 Comments
Michael Angeles
Michael Angeles on 7 Feb 2022
HI DGM,
the Example array would be something like below but stores the whole new filtered data into a new n x m array variable. I was thinking of a nested for loop but I couldn't get it to work...
Jan
Jan on 7 Feb 2022
I do not understand, what you are asking for. What does this mean: concatenate "some data" on the column x ?
What is the shown table? A string array? Then setdiff should work.

Sign in to comment.

Accepted Answer

dpb
dpb on 7 Feb 2022
Without knowing the real application and how the data are obtained so it is presumed to already be character type,
>> n=16;m=2;data =cellstr(char(randi([65 70],n,m)))
data =
16×1 cell array
{'FC'}
{'FE'}
{'DD'}
{'AD'}
{'AF'}
{'BB'}
{'FE'}
{'BE'}
{'EC'}
{'BD'}
{'FA'}
{'CA'}
{'BD'}
{'BE'}
{'DF'}
{'CA'}
>> result=data(~matches(data,{'AA','BB','CC','DD'}))
result =
14×1 cell array
{'FC'}
{'FE'}
{'AD'}
{'AF'}
{'FE'}
{'BE'}
{'EC'}
{'BD'}
{'FA'}
{'CA'}
{'BD'}
{'BE'}
{'DF'}
{'CA'}
>>
Since you pasted an image instead of data, the starting array is the same; pasting in the actual example data is much better for responders and more likely to get solution to particular problem if it is more highly data-dependent than this particular one.
If OTOH, the data are really generated as numeric and then combined as above, then one can get their directly from the numerics...
>> result=cellstr(char(data(data(:,1)~=data(:,2),:)))
result =
14×1 cell array
{'FC'}
{'FE'}
{'AD'}
{'AF'}
{'FE'}
{'BE'}
{'EC'}
{'BD'}
{'FA'}
{'CA'}
{'BD'}
{'BE'}
{'DF'}
{'CA'}
>>
  3 Comments
Michael Angeles
Michael Angeles on 9 Feb 2022
I needed something that would reiterate to multiple columns and remove the extra string then concatenate the remaining data for each column independently.
DGM
DGM on 9 Feb 2022
How would you reshape this array into 2D after removing the matches?
A = {'AA' 'AB' 'AC'; 'BB' 'BA' 'BC'; 'CA' 'CB' 'CC'}
A = 3×3 cell array
{'AA'} {'AB'} {'AC'} {'BB'} {'BA'} {'BC'} {'CA'} {'CB'} {'CC'}
Arrays must be rectangular, so what is an acceptable workaround? Padding the columns with empty cells?

Sign in to comment.

More Answers (1)

DGM
DGM on 7 Feb 2022
Assuming you're dealing with a cell array of chars or string arrays:
A = {'AA'; 'AB'; 'BA'; 'BB'; 'AC'; 'CA'; 'BC'; 'CB'; 'CC'};
toremove = {'AA','BB','CC'};
% you could do it with ismember()
B = A(~ismember(A,toremove))
B = 6×1 cell array
{'AB'} {'BA'} {'AC'} {'CA'} {'BC'} {'CB'}
% or you could use setdiff()
C = setdiff(A,toremove,'stable')
C = 6×1 cell array
{'AB'} {'BA'} {'AC'} {'CA'} {'BC'} {'CB'}
  2 Comments
DGM
DGM on 9 Feb 2022
Edited: DGM on 9 Feb 2022
It should work fine on 2D arrays, but you have to realize that the result will necessarily not be 2D anymore.
A = {'AA'; 'AB'; 'BA'; 'BB'; 'AC'; 'CA'; 'BC'; 'CB'; 'CC'};
A = [A A(randperm(numel(A))) A(randperm(numel(A)))]; %replicate to 3 columns
toremove = {'AA','BB','CC'};
% you could do it with ismember()
B = A(~ismember(A,toremove))
B = 18×1 cell array
{'AB'} {'BA'} {'AC'} {'CA'} {'BC'} {'CB'} {'AB'} {'AC'} {'CA'} {'BA'} {'BC'} {'CB'} {'BA'} {'BC'} {'CB'} {'AB'} {'AC'} {'CA'}
% or you could use setdiff()
C = setdiff(A,toremove,'stable')
C = 6×1 cell array
{'AB'} {'BA'} {'AC'} {'CA'} {'BC'} {'CB'}
Note that setdiff() returns only the unique values, whereas using ismember() returns everything. Since A in this case is three randomly permuted copies of the same column, the result from B is three times that of C, as it contains three copies of each matching element.
If you are getting errors, you'll have to describe exactly what you're doing and what error you're getting.
EDIT:
Regarding columnwise filtering and padding:
A = {'AA'; 'AB'; 'BA'; 'BB'; 'AC'; 'CA'; 'BC'; 'CB'; 'CC'};
A = repmat(A,[1 3]);
A(:) = A(randperm(numel(A))) % 3x3 but matches aren't uniformly distributed
A = 9×3 cell array
{'BA'} {'CC'} {'BC'} {'CB'} {'BB'} {'AA'} {'CA'} {'BB'} {'AB'} {'AB'} {'AA'} {'AC'} {'CA'} {'AC'} {'CB'} {'BC'} {'CA'} {'CC'} {'CC'} {'BB'} {'AB'} {'CB'} {'BA'} {'AA'} {'BA'} {'BC'} {'AC'}
toremove = {'AA','BB','CC'};
B = cell(size(A));
maxr = 0;
for c = 1:size(A,2)
thisb = A(~ismember(A(:,c),toremove),c);
B(1:numel(thisb),c) = thisb;
maxr = max(maxr,numel(thisb));
end
B = B(1:maxr,:)
B = 8×3 cell array
{'BA'} {'AC' } {'BC' } {'CB'} {'CA' } {'AB' } {'CA'} {'BA' } {'AC' } {'AB'} {'BC' } {'CB' } {'CA'} {0×0 double} {'AB' } {'BC'} {0×0 double} {'AC' } {'CB'} {0×0 double} {0×0 double} {'BA'} {0×0 double} {0×0 double}
Alternatively, you could put each column in a nested cell array:
B = cell([1 size(A,2)]);
maxr = 0;
for c = 1:size(A,2)
B{c} = A(~ismember(A(:,c),toremove),c);
end
B
B = 1×3 cell array
{8×1 cell} {4×1 cell} {6×1 cell}
Again, similar can be done with setdiff() if you only want the unique results.

Sign in to comment.

Categories

Find more on Data Type Identification in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!