How to perform summation with double subscript notation?
3 views (last 30 days)
Show older comments
Md. Golam Zakaria
on 6 Mar 2022
Commented: Star Strider
on 6 Mar 2022
Hello everyone, I have to perform some analysis based on the following equation, which contains summation operator with double subscript notation.
I have written a code. Can anyone please look at it and confim whether I am wrong or right?
alpha =0;
for i=1:2
for j=1:2
alpha=alpha +(C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)/(exp(Ep(i)/(k*T))-1))+(((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))));
end
end
Alpha=(alpha+(Ad*((E-Egd)^(1/2))));
0 Comments
Accepted Answer
Star Strider
on 6 Mar 2022
First, provide the ‘C’ and the other missing vectors, then save ‘alpha’ as a matrix, then use the sum function to sum its elements.
alpha =0;
for i=1:2
for j=1:2
alpha(i,j) = C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)/(exp(Ep(i)/(k*T))-1)));
end
end
Alpha=(sum(alpha(:))+(Ad*((E-Egd).^(1/2))))
Try that with the vectors to see if the result is as desired.
.
4 Comments
Star Strider
on 6 Mar 2022
I do not see anything wrong with it. The easiest way to troubleshoot it is to see what the individual terms evaluate to, and then see if those are correct —
h=4.136*10^-15; % Planck's Constant
k=8.617*10^-5; % Boltzmann's Constant
c=3*10^8; % speed of light
T=300; % Ambient Temparature
beta=7.021*10^-4;
gamma=1108;
Eg0_1=1.1557;
Eg0_2=2.5;
Egd0=3.2;
Eg1=Eg0_1-((beta*(T^2))/(T+gamma));
Eg2=Eg0_2-((beta*(T^2))/(T+gamma));
Egd=Egd0-((beta*(T^2))/(T+gamma));
Eg=[Eg1 Eg2];
Ep=[1.827*10^-2 5.773*10^-2];
C=[5.5 4.0];
A=[3.231*10^2 7.237*10^3];
Ad=1.052*10^6;
walenength=(.2*10^-6):(.0001*10^-6):(1.2*10^-6);
num=numel(walenength);
Alpha=nan(1,num);
for t=1:(num/1000)
lambda=walenength(t);
E=((h*c)/lambda);
alpha =0;
for i=1:2
for j=1:2
fprintf([repmat('—',1, 20) '\nt = %4d\ti = %d\tj = %d\n'],t,i,j)
Term_1(i,j) = (((E-Eg(j)+Ep(i))^2)./(exp(Ep(i)/(k.*T))-1))
Term_2(i,j) = (((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))
alpha=alpha +(C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)./(exp(Ep(i)/(k.*T))-1))+(((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))));
end
end
Alpha(t)=(alpha+(Ad*((E-Egd)^(1/2))));
end
figure
plot((walenength./10^-6),real(Alpha))
hold on
plot((walenength./10^-6),imag(Alpha))
plot((walenength./10^-6),abs(Alpha),'--')
hold off
set(gca,'YScale','log')
ylim([(10^0) (10^9)])
xlabel('Wavelength \lambda ,(\mum)')
ylabel('Absorption Coefficient, \alpha(m^{-1})')
legend('Re(\alpha(T))','Im(\alpha(T))','|\alpha(T)|', 'Location','best')
See if the intermediate values appear to be correct.
.
More Answers (0)
See Also
Categories
Find more on Creating and Concatenating Matrices in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!