How to Train Network on Image and Feature Data for regression

1 view (last 30 days)
dsX1Train = arrayDatastore(X1Train,IterationDimension=4);
dsX2Train = arrayDatastore(X2Train);
dsTTrain = arrayDatastore(TTrain);
dsTrain = combine(dsX1Train,dsX2Train,dsTTrain);
%%
lgraph = layerGraph();
tempLayers = [
imageInputLayer([224 224 3],"Name","imageinput_1")
convolution2dLayer([3 3],8,"Name","conv_1","Padding","same")
batchNormalizationLayer("Name","batchnorm_1")
reluLayer("Name","relu_1")
averagePooling2dLayer([2 2],"Name","avgpool2d_1","Stride",[2 2])
convolution2dLayer([3 3],16,"Name","conv_2","Padding","same")
batchNormalizationLayer("Name","batchnorm_2")
reluLayer("Name","relu_2")
averagePooling2dLayer([2 2],"Name","avgpool2d_2","Stride",[2 2])
convolution2dLayer([3 3],32,"Name","conv_3","Padding","same")
batchNormalizationLayer("Name","batchnorm_3")
reluLayer("Name","relu_3")
convolution2dLayer([3 3],32,"Name","conv_4","Padding","same")
batchNormalizationLayer("Name","batchnorm_4")
reluLayer("Name","relu_4")
dropoutLayer(0.2,"Name","dropout")
fullyConnectedLayer(1,"Name","fc_1")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
imageInputLayer([1 46 1],"Name","imageinput_2")
fullyConnectedLayer(1,"Name","fc_2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
concatenationLayer(2,2,"Name","concat")
fullyConnectedLayer(1,"Name","fc_3")
regressionLayer("Name","regressionoutput")];
lgraph = addLayers(lgraph,tempLayers);
clear tempLayers;
lgraph = connectLayers(lgraph,"fc_2","concat/in1");
lgraph = connectLayers(lgraph,"fc_1","concat/in2");
%%
options = trainingOptions("sgdm", ...
MaxEpochs=15, ...
InitialLearnRate=0.001, ...
Plots="training-progress", ...
Verbose=0);
net = trainNetwork(dsTrain,lgraph,options);
Warning: Training stops at iteration 3 because the training loss is NaN. Predictions using the output network may contain NaN values.
  1 Comment
yanqi liu
yanqi liu on 14 Mar 2022
yes,sir,may be check the data to find NaN value,if possible,may be upload your data to analysis

Sign in to comment.

Answers (0)

Categories

Find more on Deep Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!