Recover gaussian by using fft and ifft.
1 view (last 30 days)
Show older comments
I am trying to recover gaussian by using fft and ifft. But the result is correct only in case of the analytical fft. Please give me advice what should I do in discrete case.
clear all;
T=10;
N=256;
dt=T/(N-1);
t=linspace(-T/2,T/2,N);
f=exp(-t.^2);
g=sqrt(pi).*exp(-(pi^2).*t.^2);
F=fft(fftshift(f))*dt;
F1=F(1:N/2+1);
F2=F(N/2+1:N);
F=[F2,F1];
dnu=(N-1)/(N*T);
nuNyq=1/(2*dt);% Nyquist frequency
nu=-nuNyq+dnu*(0:N);
% plot(t,g);
% plot(nu(N/2+1-20:N/2+1+20),real(F(N/2+1-20:N/2+1+20)));
%------------ifft of analitical Fourier transform--------------------------
Z=ifft(ifftshift(g))*N*dt;
Z1=Z(1:N/2+1);
Z2=Z(N/2+1:N);
Z=[Z2,Z1];
figure
hold on;
plot(t,f);
plot(nu(N/2+1-20:N/2+1+20),real(Z(N/2+1-20:N/2+1+20)));
hold off;
%--------------------------------------------------------------------------
%----------------ifft of discrete Fourier transform------------------------
G=ifft(ifftshift((F)))*dt*N;
G1=G(1:N/2+1);
G2=G(N/2+1:N);
G=[G2,G1];
figure
hold on;
plot(t,f);
plot(nu(N/2+1-20:N/2+1+20),real(G(N/2+1-20:N/2+1+20)));
hold off;
%--------------------------------------------------------------------------
0 Comments
Answers (1)
Youssef Khmou
on 30 Dec 2014
Try :
G(end)=[];
G=(sqrt(2*pi))*G;
figure; plot(t,f,'r',t,G,'g');
0 Comments
See Also
Categories
Find more on Transforms in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!