
How to solve this error cause our origin pic is 512*512 but my GPU is not good enough so training is too slow and i wanna use 256*256 to let it train faster!
3 views (last 30 days)
Show older comments
imds1 = imageDatastore('E:\Picture\PDRR');
imds2 = imageDatastore ('E:\Picture\DRR');
augmenter = imageDataAugmenter( ...
'RandRotation',@()randi([0,1],1)*90, ...
'RandXReflection',true);
miniBatchSize = 4;
patchSize = [256 256];
patchds = randomPatchExtractionDatastore(imds1,imds2,patchSize, ...
'PatchesPerImage',8, ...
'DataAugmentation',augmenter);
patchds.MiniBatchSize = miniBatchSize;
lgraph=layerGraph();
tempLayers=[
imageInputLayer([256 256 1],"Name","ImageInputLayer","Normalization","rescale-zero-one")
convolution2dLayer([3 3],32,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution2dLayer([3 3],32,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph=addLayers(lgraph,tempLayers);
tempLayers=[
maxPooling2dLayer([2 2],"Name","Encoder-Stage-1-MaxPool","Stride",2 )
convolution2dLayer([3 3],64,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution2dLayer([3 3],64,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph=addLayers(lgraph,tempLayers);
tempLayers=[
maxPooling2dLayer([2 2],"Name","Encoder-Stage-2-MaxPool","Stride",2)
convolution2dLayer([3 3],128,"Name","Encoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-1")
convolution2dLayer([3 3],128,"Name","Encoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-2")];
lgraph=addLayers(lgraph,tempLayers);
tempLayers=[
dropoutLayer(0.5,"Name","Encoder-Stage-3-DropOut")
maxPooling2dLayer([2 2],"Name","Encoder-Stage-3-MaxPool","Stride",2)
convolution2dLayer([3 3],256,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-1")
convolution2dLayer([3 3],256,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-2")
dropoutLayer(0.5,"Name","Bridge-DropOut")
transposedConv2dLayer([2 2],128,"Name","Decoder-Stage-1-UpConv","Stride",2)
reluLayer("Name","Decoder-Stage-1-UpReLU")];
lgraph=addLayers(lgraph,tempLayers);
tempLayers=[
depthConcatenationLayer(2,"Name","Decoder-Stage-1-DepthConcatenation")
convolution2dLayer([3 3],128,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution2dLayer([3 3],128,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv2dLayer([2 2],64 ,"Name","Decoder-Stage-2-UpConv","Stride",2)
reluLayer("Name","Decoder-Stage-2-UpReLU")];
lgraph=addLayers(lgraph,tempLayers);
tempLayers=[
depthConcatenationLayer(2,"Name","Decoder-Stage-2-DepthConcatenation")
convolution2dLayer([3 3],64,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution2dLayer([3 3],64,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
transposedConv2dLayer([2 2],32,"Name","Decoder-Stage-3-UpConv","Stride",2)
reluLayer("Name","Decoder-Stage-3-UpReLU")];
lgraph=addLayers(lgraph,tempLayers);
tempLayers=[
depthConcatenationLayer(2,"Name","Decoder-Stage-3-DepthConcatenation")
convolution2dLayer([3 3],32,"Name","Decoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-1")
convolution2dLayer([3 3],32,"Name","Decoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-2")
convolution2dLayer([2 2],1,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
regressionLayer('Name','output')
];
lgraph=addLayers(lgraph,tempLayers);
clear tempLayers;
lgraph=connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph=connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-3-DepthConcatenation/in2");
lgraph=connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph=connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-2-DepthConcatenation/in2");
lgraph=connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Encoder-Stage-3-DropOut");
lgraph=connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Decoder-Stage-1-DepthConcatenation/in2");
lgraph=connectLayers(lgraph,"Decoder-Stage-1-UpReLU","Decoder-Stage-1-DepthConcatenation/in1");
lgraph=connectLayers(lgraph,"Decoder-Stage-2-UpReLU","Decoder-Stage-2-DepthConcatenation/in1");
lgraph=connectLayers(lgraph,"Decoder-Stage-3-UpReLU","Decoder-Stage-3-DepthConcatenation/in1");
figure
plot(lgraph)
maxEpochs =1;
epochIntervals = 1;
initLearningRate = 0.01;
learningRateFactor = 0.0001;
l2reg = 0.0001;
options = trainingOptions('sgdm', ...
'Momentum',0.9, ...
'InitialLearnRate',initLearningRate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',10, ...
'LearnRateDropFactor',learningRateFactor, ...
'L2Regularization',l2reg, ...
'MaxEpochs',maxEpochs ,...
'MiniBatchSize',miniBatchSize, ...
'GradientThresholdMethod','l2norm', ...
'Plots','training-progress', ...
'GradientThreshold',0.01);
modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS');
net = trainNetwork(patchds,lgraph,options);
save(['trainedNet-' modelDateTime '-Epoch-' num2str(maxEpochs*epochIntervals) ...
'ScaleFactors-' num2str(234) '.mat'],'net','options');
pic = imread('E:\Picture\PDRR\00001.jpg');
out2 = predict(net,pic);
subplot(1,2,1)
imshow(pic)
subplot(1,2,2)
imshow(out2,[])
2 Comments
Seth Furman
on 6 Jun 2022
Edited: Seth Furman
on 6 Jun 2022
I should mention that datestr is discouraged. Prefer datetime where possible.

For example,
dt = datetime("now","Format","dd-MMM-yyyy-HH-mm-ss")
string(dt)
Joss Knight
on 11 Jun 2022
Is randomPatchExtractionDatastore what you actually want, or is it just your attempt to reduce the input size?
Answers (1)
Dinesh
on 2 Mar 2023
Hi FangMing!
As per my understanding you want to resize the picture from 512*512 to 256 * 256 to increase the training speed.
You can use the function ‘imresize’ to resize the image, set the ‘scale’ parameter to 0.5.
You can refer the following MATLAB documentation for more details:
- https://www.mathworks.com/help/matlab/ref/imresize.html
- https://www.mathworks.com/help/deeplearning/ug/optimize-neural-network-training-speed-and-memory.html
Hope this helps !
0 Comments
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!