Solving nonlinear function using fzero, Error Function values at the interval endpoints must differ in sign.

4 views (last 30 days)
```
Imp=100;
t0=1e-6;
P=204000000;
Tf=2e-3;
x = fzero( @(x) myfunction(x, t0, Imp, P, Tf), [1.001, 10000]);
function [f] = myfunction( x, t0, Imp, P0, Tf)
f = Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
end
```
x must bigger than 1.0
I don't think these input will make fzero suffer
thank you
  4 Comments
Walter Roberson
Walter Roberson on 4 Jun 2022
Edited: Walter Roberson on 4 Jun 2022
It is +100 at x=-1 but change x away from -1 and it goes complex, so at the moment I have no evidence that it has a real root.
Sam Chak
Sam Chak on 5 Jun 2022
Once you have found the root of nonlinear function, can you verify if the solution really crosses 0?
Imp = 100;
t0 = 1e-6;
P0 = 204000000;
Tf = 2e-3;
f = @(x) Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));

Sign in to comment.

Answers (1)

Lateef Adewale Kareem
Lateef Adewale Kareem on 4 Jun 2022
Imp=100;
t0=1e-6;
P=204000000;
Tf=2e-3;
x = nan;
options = optimset('Display','off'); % show iterations
x0 = 2;
while(isnan(x))
x = fzero( @(x) myfunction(x, t0, Imp, P, Tf), x0, options);
x0 = x0*1.2;
end
disp(['x = ', num2str(x)])
x = 1.762566874060497e+21
function [f] = myfunction( x, t0, Imp, P0, Tf)
f = Imp - (-(P0*t0*(x-1.0)*(x^(-Tf/(t0*(x-1.0)))-1.0))/(log(x)*(x^(-1.0/(x-1.0)) -x^(-x/(x-1.0))))+(P0*t0*(x^(-(Tf*x)/(t0*(x-1.0)))-1.0)*(x-1.0))/(x*log(x)*(x^(-1.0/(x-1.0))-x^(-x/(x-1.0)))));
end

Categories

Find more on Get Started with MATLAB in Help Center and File Exchange

Products


Release

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!