Fitting differential equations using function file, error message "too many input arguments"
3 views (last 30 days)
Show older comments
Hello,
I am attempting to fit the set of differential equations outlined in the code below to the data given by Gut, Intestine, and MLN. Upon attempting to run this code however, I am presented with the message of having "too many input arguments." I am unsure of how to fix this issue, as it seems that all input arguments of the ModelIntegrationFunction are accounted for.
function Fit = ModelIntegrationFunction
function C=kinetics(theta,t)
%c0 denotes the intial conditions of each compartment
c0=[(10^7);0;0];
[T,Cv]=ode45(@DifEq,t,c0);
function dC=DifEq(t,c)
dcdt=zeros(3,1);
dcdt(1)= -7.2132*c(1);
dcdt(2)= 0.4832*c(1)+0.863*c(2)*(1-(c(2)/(10^8)))-((4.9*c(3))/(1+c(2)*(10^(-3.35))))-298*c(2);
dcdt(3)= 298*c(2)+2.82*c(3)-0.48*c(3);
dC=dcdt;
end
C=Cv;
end
t = [0,0.5,1,2];
Gut = [1;2;3;4]; %No data inputted, doesnt matter
Intestine = [0;24920000;33820000;54779900];
MLN = [0;4.165;868.261;5929.337];
c = [Gut, Intestine, MLN];
theta0=[1;1];
[theta,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=lsqcurvefit(@kinetics,theta0,t,c);
fprintf(1,'\tRate Constants:\n')
for k1 = 1:length(theta)
fprintf(1, '\t\tTheta(%d) = %8.5f\n', k1, theta(k1))
end
tv = linspace(min(t), max(t));
Fit = kinetics(theta, tv);
end
0 Comments
Accepted Answer
Torsten
on 22 Aug 2022
Edited: Torsten
on 22 Aug 2022
Runtime is too long, but seems to work in R2022 a.
t = [0,0.5,1,2];
Gut = [1;2;3;4]; %No data inputted, doesnt matter
Intestine = [0;24920000;33820000;54779900];
MLN = [0;4.165;868.261;5929.337];
c = [Gut, Intestine, MLN];
theta0=[1;1];
[theta,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=lsqcurvefit(@kinetics,theta0,t,c);
fprintf(1,'\tRate Constants:\n')
for k1 = 1:length(theta)
fprintf(1, '\t\tTheta(%d) = %8.5f\n', k1, theta(k1))
end
tv = linspace(min(t), max(t));
Fit = kinetics(theta, tv);
function C=kinetics(theta,t)
%c0 denotes the intial conditions of each compartment
c0=[(10^7);0;0];
[T,Cv]=ode45(@DifEq,t,c0);
function dC=DifEq(t,c)
dcdt=zeros(3,1);
dcdt(1)= -7.2132*c(1);
dcdt(2)= 0.4832*c(1)+0.863*c(2)*(1-(c(2)/(10^8)))-((4.9*c(3))/(1+c(2)*(10^(-3.35))))-298*c(2);
dcdt(3)= 298*c(2)+2.82*c(3)-0.48*c(3);
dC=dcdt;
end
C=Cv;
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Systems of Nonlinear Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!