How can i adapt Euloer backward method
2 views (last 30 days)
Show older comments

Solve this by eulor backward method


then I write BW code in matlab simply
% dy/dt=y-t^2+1 ; 0<=t<=2 ; y(0)=0.5;
clc,clear;close all;
f = @(t,y) (y-t^2+1);
a = 0; %input('initial ponit, a: ');
b = 100; %input('end point, b: ');
n = 10; %input('intervals, n: ');
alpha = 166*10^(4); %input('initial condition, alpha: ');
h = (b-a)/n;
t=[a zeros(1,n)];
y=[alpha zeros(1,n)];
for i = 1:n+1
t(i+1)=t(i)+h;
yprime=y(i)+h*f(t(i),y(i)); %slope
y(i+1)=y(i)+h*f(t(i+1),yprime);
delta=y(i+1)-yprime;
fprintf('%.4f %.4f\n', t(i), y(i));
figure(1)
plot(t(i),y(i),'r*');
grid on;
plot(t(i),delta,'g*',t(i),yprime,'b*');
xlabel('t values'); ylabel('y values');
hold on;
legend('delta','yprime','BW')
end
then how can i adapt it???
1 Comment
Answers (0)
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!