Is there a way to see and understand the steps of reduction while this equation gets solved for V? The result should be somewhere around 6. Thank you.
1 view (last 30 days)
Show older comments
(65-(50-V))/((15-V*0.5)/(V*0.866)) == ((50-V)-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((26.86)-(((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-36.6)/((28.4)/((26.86)-((65-(50-V))/1.732)))))
0 Comments
Accepted Answer
Sam Chak
on 7 Sep 2022
Edited: Sam Chak
on 7 Sep 2022
Hi @Karl
The equation is super long with many parentheses and it's hard to interpret without spaces. Maybe you can view it this way:
syms V
eqn = (65-(50-V))/((15-V*0.5)/(V*0.866)) == ((50-V)-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-((65/(((15-V*0.5)/(V*0.866))+(1.363)))*(1.363)))/((26.86)-(((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((((((50*2-(50-V))/3.05)*1.732+(50-V))-(50-V))/((26.5)-(65-(50-V))/((28.4)/((26.5)-((28.4)/((15-V*0.5)/(V*0.866)))))))+1.732))*1.732+(50-V))-36.6)/((28.4)/((26.86)-((65-(50-V))/1.732)))))
sol = solve(eqn)
The solution requires finding the roots of a 7th-order polynomial equation.
sol = vpasolve(eqn)
As you can see, one of the five real solutions is , which is probably the one you are referring.
1 Comment
More Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!