Implementation of High Order DAE for Matlab Solver
1 view (last 30 days)
Show older comments
Hi,
I got three variables y1(t), y2(t) and y3(t) which I want to solve for. Moreover I have two ODEs in explicit and coupled form and one algebraic equation , which look as follows:
1. Eqn: y1''' = f(y1'', y1', y1, y2'', y2', y2, u)
2. Eqn: y3'' = f(y1', y1, y2'', y2', y2, y3', y3, u)
3. Eqn: y1 = y2 + y3
u is my input which is a cosine function with amplitude U_g
I want to use ode15s() to solve this system if its correct, with a Mass Matrix M and a form like
M(t,y)*y′ = f(t,y)
Therefore I have to reduce the order of the above equations first.
Now my function looks like the following, where "d" represents first differential and "dd" the 2nd differential:
function out = myodefunc(t, y, U_g, R_e, L_e, M_m, bl_0, bl_1, ...)
out = zeros(8, 1);
% Reduce Order of Diffenrential Equations
y1 = y(1);
dy1 = y(2);
ddy1 = y(3);
y2 = y(4);
dy2 = y(5);
ddy2 = y(6);
y3 = y(7);
dy3 = y(8);
% Define Output
out(1) = y1 - y2 - y3;
out(2) = dy1;
out(3) = ddy1;
out(4) = -(bl_0^3*dy1 - bl_0^2*U_g*cos(2*pi*f0.*t) + bl_1^3*y1^3*dy1 + bl_2^3*y1^6*dy1 - bl_1^2*U_g*cos(2*pi*f0.*t)*y1^2 - ...
out(5) = dy2;
out(6) = ddy2;
out(7) = dy3;
out(8) = (L_e*bl_0*s_s_0*dy2 - L_e*bl_0*s_v_0*dy3 + R_e*bl_0*r_s_0*dy2 - R_e*bl_0*r_v_0*dy3 + R_e*bl_0*s_s_0*y2 - R_e*bl_0*s_v_0*y3 + -...
end
With a Mass Matrix :
M =
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
Do you guys think, that I implemented this in the right way?
Mainly I am concerned about the algebraic equation, which is in the first line of the output. It's because I get zero output for out(2), out(3), out(5) and out(6).
0 Comments
Accepted Answer
Torsten
on 9 Mar 2015
I guess your DAE system is of higher index than 1.
You can check this:
Best wishes
Torsten.
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!