I would like to run the calculating of the following piece of code 30 times in MATLAB
6 views (last 30 days)
Show older comments
I am trying to calculate the received optical power for an optical communication system for 30 times. When I run the code, I get a 41 x 41 double matrix of H0_LoS and power (P_r_LOS & P_rec_dBm) as shown below
I would like to get a matrix or a cell with results up to 30 times that of the implemented code. The case above is only for one iteration. Any assistance, please?
My try below
close all;
clear variables;
clc;
%% Simulation Parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Main Simulation Parameters %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%-------------------------%
% NUMBER OF LIGHT SOURCES %
%-------------------------%
N_t = 1; % Number of light sources
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% AP Parameters %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------%
% LIGHT SOURCES GEOMETRY %
%------------------------%
L = 20; W = 20; H = 3; % Length, width and height of the room (m)
theta_half = 60;
m = -log(2)./log(cosd(theta_half)); % Lambertian order of emission
coord_t = [0 0 0]; % Positions of the light sources
n_t_LED = [0, 0, -1]; n_t_LED = n_t_LED/norm(n_t_LED); % Normalized normal vector of each light source
n_t = repmat(n_t_LED, N_t, 1); % Normalized normal vectors of the light sources
%-------------------------------------%
% LIGHT SOURCES ELECTRICAL PARAMETERS %
%-------------------------------------%
P_LED = 2.84; % Average electrical power consummed by each light source (W)
% P_LED = 1;
param_t = {coord_t, n_t, P_LED, m};
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Rx Parameters %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------%
% PHOTODETECTOR PARAMETERS %
%--------------------------%
A_det = 1e-4; % Photoreceiver sensitive area (m²)
FOV = 60*pi/180; % Fielf-of-view of the photoreceiver
T_s = 1; % Gain of the optical filter (ignore if not used)
index = 1.5; % Refractive index of the Rx concentrator/lens (ignore if not used)
G_Con = (index^2)/sin(FOV); % Gain of an optical concentrator; ignore if no lens is used
n_r = [0, 0, 1]; % Normal vector of the photoreceiver
n_r = n_r/norm(n_r); % Normal vector of the photoreceiver (normalized)
%---------------------------%
% RECEIVER PLANE PARAMETERS %
%---------------------------%
step = 0.5; % Distance between each receiving point (m)
X_r = -L/2:step:L/2; % Range of Rx points along x axis
Y_r = -W/2:step:W/2; % Range of Rx points along y axis
N_rx = length(X_r); N_ry = length(Y_r); % Number of reception points simulated along the x and y axis
z_ref = 0.85; % Height of the receiver plane from the ground (m)
z = z_ref-H; % z = -1.65; % Height of the Rx points ("-" because coordinates system origin at the center of the ceiling)
if( abs(z) > H )
fprintf('ERROR: The receiver plane is out of the room.\n');
return
end
param_r = {A_det, n_r, FOV}; % Vector of the Rx parameters used for channel simulation
%% LOS received optical power calculation
H0_LOS = zeros(N_rx,N_ry,N_t);
T = param_t{1}(1,:);
P_t = param_t{3};
for iter = 1:30
for r_x = 1:N_rx
for r_y = 1:N_ry
for i_t = 1:N_t
x = X_r(r_x); y = Y_r(r_y);
R = [x,y,z];
v_tr = (R-T)./norm(R-T);
d_tr = sqrt(dot(R-T,R-T));
cos_phi = 1; %cos(phi)
cos_psi = 1; %cos(psi)
H0_LOS(r_x,r_y,i_t) = (m+1)*A_det/(2*pi*d_tr^2)*cos_phi^m*cos_psi;
end
end
end
end
P_r_LOS = P_t.*H0_LOS.*T_s.*G_Con;
P_rec_dBm = 10*log10(P_r_LOS*1000);
14 Comments
Dyuman Joshi
on 9 Oct 2022
Edited: Dyuman Joshi
on 9 Oct 2022
That sounds like a good idea.
It would go something like this -
[P_r_LOS,P_rec_dBm]=optical;
P_r_LOS = repmat(P_r_LOS,1,1,30);
size(P_r_LOS)
P_rec_dBm = repmat(P_rec_dBm,1,1,30);
function [P_r_LOS,P_rec_dBm]=optical
N_t = 1; % Number of light sources
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% AP Parameters %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------%
% LIGHT SOURCES GEOMETRY %
%------------------------%
L = 20; W = 20; H = 3; % Length, width and height of the room (m)
theta_half = 60;
m = -log(2)./log(cosd(theta_half)); % Lambertian order of emission
coord_t = [0 0 0]; % Positions of the light sources
n_t_LED = [0, 0, -1]; n_t_LED = n_t_LED/norm(n_t_LED); % Normalized normal vector of each light source
n_t = repmat(n_t_LED, N_t, 1); % Normalized normal vectors of the light sources
%-------------------------------------%
% LIGHT SOURCES ELECTRICAL PARAMETERS %
%-------------------------------------%
P_LED = 2.84; % Average electrical power consummed by each light source (W)
% P_LED = 1;
param_t = {coord_t, n_t, P_LED, m};
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Rx Parameters %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------%
% PHOTODETECTOR PARAMETERS %
%--------------------------%
A_det = 1e-4; % Photoreceiver sensitive area (m²)
FOV = 60*pi/180; % Fielf-of-view of the photoreceiver
T_s = 1; % Gain of the optical filter (ignore if not used)
index = 1.5; % Refractive index of the Rx concentrator/lens (ignore if not used)
G_Con = (index^2)/sin(FOV); % Gain of an optical concentrator; ignore if no lens is used
n_r = [0, 0, 1]; % Normal vector of the photoreceiver
n_r = n_r/norm(n_r); % Normal vector of the photoreceiver (normalized)
%---------------------------%
% RECEIVER PLANE PARAMETERS %
%---------------------------%
step = 0.5; % Distance between each receiving point (m)
X_r = -L/2:step:L/2; % Range of Rx points along x axis
Y_r = -W/2:step:W/2; % Range of Rx points along y axis
N_rx = length(X_r); N_ry = length(Y_r); % Number of reception points simulated along the x and y axis
z_ref = 0.85; % Height of the receiver plane from the ground (m)
z = z_ref-H; % z = -1.65; % Height of the Rx points ("-" because coordinates system origin at the center of the ceiling)
if( abs(z) > H )
fprintf('ERROR: The receiver plane is out of the room.\n');
return
end
param_r = {A_det, n_r, FOV}; % Vector of the Rx parameters used for channel simulation
%% LOS received optical power calculation
H0_LOS = zeros(N_rx,N_ry,N_t);
T = param_t{1}(1,:);
P_t = param_t{3};
for iter = 1:30
for r_x = 1:N_rx
for r_y = 1:N_ry
for i_t = 1:N_t
x = X_r(r_x); y = Y_r(r_y);
R = [x,y,z];
v_tr = (R-T)./norm(R-T);
d_tr = sqrt(dot(R-T,R-T));
cos_phi = 1; %cos(phi)
cos_psi = 1; %cos(psi)
H0_LOS(r_x,r_y,i_t) = (m+1)*A_det/(2*pi*d_tr^2)*cos_phi^m*cos_psi;
end
end
end
end
P_r_LOS = P_t.*H0_LOS.*T_s.*G_Con;
P_rec_dBm = 10*log10(P_r_LOS*1000);
end
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!