Forward Euler solution plotting for dy/dt=y^2-y^3
2 views (last 30 days)
Show older comments
Hi,
I am trying to solve the flame propagation model dy/dt=y^2-y^3 with y(0)= 1/100 and 0<t<200, using the forward and backward euler method with step size 0.01. But it has been giving me errors. How should I go about this? Please help I need this for my project
Thank you
Here are my codes for the Forward Euler
h=0.01;
y(0)=2
for n=1:N
t(n+1)=n*h
opts = odeset('RelTol',1.e-4);
y(n+1)= y(n)+h*(y.^2-y.^3);
end
plot(t,y)
0 Comments
Accepted Answer
Davide Masiello
on 15 Nov 2022
Edited: Davide Masiello
on 15 Nov 2022
There are a couple of issues with your code
1) Indexes in MatLab start at 1, not 0, so y(0) is not valid syntax and must be replaced with y(1).
2) First index, then raise to the power, i.e. y^2(n) becomes y(n)^2
See example below (since you have not specified the value of delta, I arbitrarily replaced it with 0.1)
N = 100; % number of steps
t = linspace(0,200,N);
h = t(2)-t(1); % step size
y = zeros(1,N); % Initialization of solution (speeds up code)
y(1) = 1/100; % Initial condition
for n = 1:N-1
y(n+1) = y(n)+h*(y(n)^2-y(n)^3); % FWD Euler solved for y(n+1)
end
figure(1)
plot(t,y)
Now, the backward euler method is a bit more complicated because it's an implicit method.
You can use a root finder algorithm like fzero and do
N = 100; % number of steps
t = linspace(0,200,N);
h = t(2)-t(1); % step size
y = zeros(1,N); % Initialization of solution (speeds up code)
y(1) = 1/100; % Initial condition
for n = 1:N-1
f = @(x) x-y(n)-h*(x.^2-x.^3);
y(n+1) = fzero(f,y(n)); % BWD Euler solved for y(n+1)
end
figure(2)
plot(t,y)
15 Comments
Torsten
on 23 Nov 2022
They are not dependent on the model you solve - stability regions only depend on the discretization method for the ODE
y' = f(t,y)
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!