How to vectorize this piece of code and why doesn't e come out to be zero though it must come out to be zero because u and b are equal?

1 view (last 30 days)
u=[30 50 75 -30 -50 -75];
b=u;
Noise=5;
M = 6;%Constant1
N = 6;%Constant2
d = 0.5;%Constant3
K = length(u)/2; %Constant4
alpha=ones(1,K);%[1 1 1 1 1];
a=zeros(M,K);%aTx
f=zeros(N,K);%fRx
c=zeros(M*N, length(u)-K);% Extended Matrix
%%%%%%%%%%%%%%%%%%%%
% Swapping vector b
%%%%%%%%%%%%%%%%%%%%
[~, ix] = sort(u); % u is my desired vector
[~, ix1(ix)] = sort(b);
b = b(ix1);
%%%%%%%%%%%%%%%%%%%%
% Observed response
%%%%%%%%%%%%%%%%%%%
for i=1:K
for h=1:M
a(h,i)=exp(j*2*pi*(h-1)*d*sind(u(i))); %%%%% a
end
for p=1:N
f(p,i)=exp(j*2*pi*(p-1)*d*sind(u(K+i))); %%%%% f
end
end
for g= 1:K
c(:,g)=kron(a(:,g),f(:,g));% Extended vector
end
yo=c*alpha'; % Observed Response (Noise Free)
yo=awgn(yo,Noise);% Uncomment for Noise consideration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimated response
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ae=zeros(M,K);
fe=zeros(N,K);
ce=zeros(M*N, length(u)-K);
for i=1:K
for h=1:M
ae(h,i)=exp(j*2*pi*(h-1)*d*sind(b(i))); %%%%% ae
end
for p=1:N
fe(p,i)=exp(j*2*pi*(p-1)*d*sind(b(K+i))); %%%%% fe
end
end
for g= 1:K
ce(:,g)=kron(ae(:,g),fe(:,g));
end
ye=ce*alpha';% Estimated Response
%%%%%%%%%%%%%%%%%
% MSE
%%%%%%%%%%%%%%%%%
e=0.0;
for s=1:M*N
e=e+(abs(yo(s,1)-ye(s,1))).^2;
end
e=e/M*N;

Accepted Answer

Bruno Luong
Bruno Luong on 10 Dec 2022
Not tested but this
for i=1:K
for h=1:M
ae(h,i)=exp(j*2*pi*(h-1)*d*sind(b(i))); %%%%% ae
end
for p=1:N
fe(p,i)=exp(j*2*pi*(p-1)*d*sind(b(K+i))); %%%%% fe
end
end
can be replaced by
h=(1:M)';
p=(1:N)';
i=1:K;
br = b(:).';
ae=exp(j*2*pi*(h-1)*d.*sind(br(i)));
fe=exp(j*2*pi*(p-1)*d.*sind(br(K+i)));
And
for g= 1:K
ce(:,g)=kron(ae(:,g),fe(:,g));
end
By
ce = reshape(reshape(ae,K,1,[]).*fe,K,[]);
  7 Comments

Sign in to comment.

More Answers (1)

Walter Roberson
Walter Roberson on 10 Dec 2022
Edited: Walter Roberson on 10 Dec 2022
format long g
u=[30 50 75 -30 -50 -75];
b=u;
Noise=5;
M = 6;%Constant1
N = 6;%Constant2
d = 0.5;%Constant3
K = length(u)/2; %Constant4
alpha=ones(1,K);%[1 1 1 1 1];
a=zeros(M,K);%aTx
f=zeros(N,K);%fRx
c=zeros(M*N, length(u)-K);% Extended Matrix
%%%%%%%%%%%%%%%%%%%%
% Swapping vector b
%%%%%%%%%%%%%%%%%%%%
[~, ix] = sort(u); % u is my desired vector
[~, ix1(ix)] = sort(b);
b = b(ix1);
%%%%%%%%%%%%%%%%%%%%
% Observed response
%%%%%%%%%%%%%%%%%%%
for i=1:K
for h=1:M
a(h,i)=exp(j*2*pi*(h-1)*d*sind(u(i))); %%%%% a
end
for p=1:N
f(p,i)=exp(j*2*pi*(p-1)*d*sind(u(K+i))); %%%%% f
end
end
for g= 1:K
c(:,g)=kron(a(:,g),f(:,g));% Extended vector
end
yo=c*alpha'; % Observed Response (Noise Free)
yo=awgn(yo,Noise);% Uncomment for Noise consideration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimated response
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ae=zeros(M,K);
fe=zeros(N,K);
ce=zeros(M*N, length(u)-K);
for i=1:K
for h=1:M
ae(h,i)=exp(j*2*pi*(h-1)*d*sind(b(i))); %%%%% ae
end
for p=1:N
fe(p,i)=exp(j*2*pi*(p-1)*d*sind(b(K+i))); %%%%% fe
end
end
for g= 1:K
ce(:,g)=kron(ae(:,g),fe(:,g));
end
ye=ce*alpha';% Estimated Response
%%%%%%%%%%%%%%%%%
% MSE
%%%%%%%%%%%%%%%%%
e=0.0;
for s=1:M*N
e=e+(abs(yo(s,1)-ye(s,1))).^2;
end
e=e/(M*N);
e2 = sum( abs(yo - ye).^2 )
e2 =
11.7479934461356
yo - ye
ans =
0.334761462628025 - 0.251604299511244i 0.178519020660132 - 0.11790756943532i 0.284315581572755 - 0.408074305354306i 0.436075962283236 + 0.0206136540004817i 0.148113323815692 - 0.1129397164173i 0.148601229842305 - 0.684227855074489i -0.045229189659987 + 1.06816976506834i 0.0449597505407739 + 0.0474860403089703i -0.117067171711324 - 0.335272836828924i -0.170838058879666 - 0.485416275775231i -1.01036972409615 + 0.0987920670194429i 0.17724058327333 + 0.358430065054272i -0.296057798011593 + 0.268159218550655i 0.219874574050923 - 0.303912184656327i -0.196397184200888 + 0.579342311435272i 0.362391793015109 - 0.00637536507210101i -0.198930152531317 + 0.17081587160563i 0.00126195142908353 + 0.196629724720236i 0.451323400274059 - 0.19338404893942i 0.0163549272291462 + 0.211263099020562i 0.153134628152902 - 0.360072343716162i 0.125618160624793 - 0.447663575852295i 0.18682261208064 - 0.440681989383234i 0.56658020901609 - 0.0413352507512756i 0.216864956628124 + 0.402128673330828i -0.650894787871801 + 0.195828199364969i 0.526482743315456 + 0.161261991699198i -0.0222655470394779 - 0.303132876336713i 0.249479128033312 - 0.125089115081018i 0.23011373904232 + 0.168827365022589i 0.37643644331261 + 0.00726229738016904i -0.933652368281796 - 0.958904637492813i -0.552407757174997 - 0.128690424103339i 0.0864282827509827 + 0.565038735206412i 0.617124996371567 - 1.11650348178558i 0.390001758508875 + 0.358139661751764i
  3 Comments
Walter Roberson
Walter Roberson on 10 Dec 2022
I thought I had canceled that post...
I do not see any reason why the values should be the same. awgn() applies randomness, but your ye has not had any randomness applied to it (certainly not exactly the same randomness). There is no reason for them to be the same.
Sadiq Akbar
Sadiq Akbar on 10 Dec 2022
Thanks dear Walter Roberson for your kind response. Yes, you are right that awgn() has been added to yo and not to ye. So that's the reason. But what about vectorization of the code? Can you replace all the for loops by vectorization?
Regards,

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!