Not enough input arguments.
4 views (last 30 days)
Show older comments
Working with A_new and trying to implement it into the R function but keep getting an error for not enough input arguments.
%Values
GMs = 1.3271244*10^20; %Nm^2/kg
GMe = GMs/332946;
x_1 = -124850219*1000; %km -> m
x_2 = -78506090*1000; %km-> m
v_1 = 15.857131*1000; %km/s-> m/s
v_2 = -25.712187*1000; %km/s->m/s
%astroids
x_1a =-154965574*1000;%km/s->m/s
x_2a = -249465245*1000;%km/s->m/s
v_1a= 24.723504*1000;%km/s->m/s
v_2a = 2.645546*1000;%km/s->m/s
% a anonymous function
x_i = [x_1,x_2];
% x_2D = sqrt(x_1^2+x_2^2); %2D- x
% x_2D = vecnorm(x_i);
% A = @(x) [((-GMs/(x_2D^3))*x_1) ; (-GMs/(x_2D^3))*x_2];
A = @(x) ( -GMs ./ (vecnorm(x).^3)) * x; %Acceleration
A_new= @(x,x_e) (( -GMs ./ (vecnorm(x).^3)) * x) - (GMe ./ (vecnorm(x-x_e).^3)*(x-x_e)); %acceleration with earths gravity
% a_i = [a_1 a_2]
a_i = A(x_i)';
% below is the values I got and they match the values given
a_1 = 5.17; %mm/s^2 ->0.0052 m/s^2
a_2 = 3.25; %mm/s^2 -> 0.0032m/s^2
%b combine arrays into 2x2 matrix
v_i = [v_1,v_2];
v_ia =[v_1a,v_2a];
%u = [x_1, v_1; x_2, v_2]; %Earth
u=[x_1, v_1; x_2, v_2; x_1a, v_1a; x_2a,v_2a];%astroid + Earth
R = @(u) [u(1:2,2),A(u(1:2,1));u(3:4,2),A_new(u(3:4,1))];%based on solution from class
%R = @(u) [u(:,2),A(u(:,1))]; for part b
%R = @(u) [u(1:2,2),A(u(1:2,1));u(3:4,2),A(u(3:4,1))]; for f and g
% R = @(u) [v_i A(x)];
%c Motion of earth over 366 days
% Explicit Euler Scheme
t = 0;
dt = 100;
matrix_u=u(:,1);
while t(end)< 31622400
t(end+1)=t(end)+dt;
%u=expliciteuler(u,dt,R);
u=rungekutta(u,dt,R); %e Runge-Kutta Scheme
matrix_u(:,end+1)=u(:,1);
end
figure(1)
plot(matrix_u(1,:),matrix_u(2,:),'g',matrix_u(3,:),matrix_u(4,:),'r') %d plot explicit Euler and e Rungekutta
grid on
legend('Earths Orbit', 'Astroid Orbit')
%g distance between earth and astroid orbit
d = vecnorm( [matrix_u(1, : ) ; matrix_u( 2, : ) ] - [ matrix_u( 3 , : ) ; matrix_u( 4 , : ) ] );
d_o= d*(1/332946);
%d(1:50) % to recall some of the distances
%y=min(d)
[min_value, min_index] = min(d)
[min_value, min_index] = min(d_o)
Answers (1)
Sulaymon Eshkabilov
on 14 Jan 2023
Edited: Sulaymon Eshkabilov
on 14 Jan 2023
In your A_new, you should have vecnorm known in A_new. If vecnorm() is a norm of a vector x that you are trying to compute, then you had better use this syntax while calling: A_new , e.g.:
A_new= @(x,x_e) (( -GMs ./ (norm(x).^3)) * x) - (GMe ./ (norm(x-x_e).^3)*(x-x_e));
1 Comment
Walter Roberson
on 14 Jan 2023
I do not understand what you are saying about vecnorm ?
Or are you saying that it has been used incorrectly ??
See Also
Categories
Find more on Earth and Planetary Science in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!