You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
solve system of matrices
2 views (last 30 days)
Show older comments
Hajar Alshaikh
on 17 Feb 2023
% I want to solve this system
f'(A,B)*[dA dB]'=[g(C))+B B*A-eye(n-1)]'
but when I found the derivative of f in the left side, I found that
f'(A,B)*[dA dB]'= [g(dA))-dB A*dB+B*dA]'
where A,B are (n-1)×(n-1) matrices
and C is n×n matrices
and I define a function chi from (n-1)×(n-1) matrices to the n×n matrices as
function chi= g(X)
chi= 3*trace X;
end
I want to solve this system for dA and dB
the problem for me is in the derivative part here
f'(A,B)*[dA dB]'= [g(dA))-dB A*dB+B*dA]'
can I said
[g(dA))-dB A*dB+B*dA]'= [g -eye(n-1);B A]*[dA dB]'
if not can I solve this system for dA and dB if i write it as
[g(dA)-dB A*dB+B*dA]'=[g(C)+B B*A-eye(n-1)]'
9 Comments
Torsten
on 17 Feb 2023
As far as I understand your question, you want - given A, B and C - determine dA and dB both matrices of size
(n-1) x (n-1) such that
[g(dA)-dB A*dB+B*dA]'=[g(C)+B B*A-eye(n-1)]'
where g is defined as
g(M) = 3*trace(M)
A,B are matrices of size (n-1) x (n-1) and C is a matrix of size n x n.
Is this correct ?
Hajar Alshaikh
on 17 Feb 2023
Yes it is correct except that C is n-1×n-1 matrix I wrote the size of C as n×n by mistake
Hajar Alshaikh
on 17 Feb 2023
this way is not working because we deal here with matrices and in your way the variables have to be x and b are vectors
Torsten
on 18 Feb 2023
The matrix equation you have is in reality a linear system of equations in the matrix entries of dA and dB.
"equationsToMatrix" transforms your matrix equation to this underlying linear system.
After getting the solution x of this linear system, you will have to reshape it back to get the matrices dA and dB.
Hajar Alshaikh
on 18 Feb 2023
I read the examples about "equationsToMatrix" and all deal with b as vector and in my situation the problem is that all A, x, and b are matrices and the other problem is that I cannot seprate the component in x than the matrix A .
I mean than we cannot say
[g(dA))-dB A*dB+B*dA]'= [g -eye(n-1);B A]*[dA dB]'
Torsten
on 18 Feb 2023
Edited: Torsten
on 19 Feb 2023
So this is not what you want ?
rng("default")
n = 20;
A = rand(n-1);
B = rand(n-1);
C = rand(n-1);
dA = sym('dA',[n-1 n-1],'real');
dB = sym('dB',[n-1 n-1],'real');
eqn = [3*trace(dA)-dB A*dB+B*dA]'==[3*trace(C)+B B*A-eye(n-1)]';
eqn = eqn(:);
vars = [reshape(dA.',[(n-1)^2 1]);reshape(dB.',[(n-1)^2 1])];
[M,b] = equationsToMatrix(eqn,vars);
sol = double(M\b);
dA = reshape(sol(1:(n-1)^2),[n-1 n-1]).';
dB = reshape(sol((n-1)^2+1:2*(n-1)^2),[n-1 n-1]).';
[3*trace(dA)-dB A*dB+B*dA]'-[3*trace(C)+B B*A-eye(n-1)]'
ans = 38×19
1.0e-14 *
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
-0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553 -0.3553
Hajar Alshaikh
on 18 Feb 2023
first of all I really want to thank you about your help and i appritiate your time, I learend from you many functions that I dont know about them before.
Now I tried your way, but I got this error
Warning: Solution does not exist because the system is inconsistent.
Error using vertcat
Dimensions of arrays being concatenated are not consistent.
Accepted Answer
Torsten
on 19 Feb 2023
Should be faster than the symbolic solution.
rng("default")
n = 50;
A = rand(n-1);
B = rand(n-1);
C = rand(n-1);
x0 = zeros(2*(n-1)^2,1);
x = fsolve(@(x)fun(x,A,B,C,n),x0);
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
dA = reshape(x(1:(n-1)^2),[n-1,n-1])
dA = 49×49
1.0e+03 *
-0.9697 -1.2841 -1.1100 -1.0445 -1.1586 -1.2281 -1.0768 -0.9605 -1.0724 -1.0369 -1.1764 -0.9773 -0.9512 -1.0230 -1.1881 -0.9808 -1.0192 -1.0678 -1.2432 -1.0212 -1.0383 -0.9359 -0.9486 -1.1359 -1.0584 -1.1338 -1.1257 -0.9812 -0.9628 -0.9208
-0.5211 -0.6925 -0.5981 -0.5635 -0.6226 -0.6578 -0.5814 -0.5162 -0.5780 -0.5564 -0.6303 -0.5278 -0.5112 -0.5491 -0.6402 -0.5259 -0.5471 -0.5732 -0.6705 -0.5500 -0.5594 -0.5001 -0.5119 -0.6114 -0.5700 -0.6076 -0.6053 -0.5272 -0.5172 -0.4967
0.2252 0.2944 0.2581 0.2441 0.2652 0.2793 0.2498 0.2234 0.2489 0.2389 0.2685 0.2307 0.2179 0.2377 0.2720 0.2269 0.2369 0.2441 0.2848 0.2372 0.2407 0.2138 0.2232 0.2611 0.2435 0.2586 0.2588 0.2268 0.2248 0.2153
0.2900 0.3845 0.3341 0.3153 0.3454 0.3672 0.3232 0.2882 0.3204 0.3103 0.3511 0.2943 0.2830 0.3059 0.3565 0.2920 0.3050 0.3196 0.3719 0.3056 0.3105 0.2781 0.2845 0.3404 0.3153 0.3384 0.3377 0.2935 0.2883 0.2761
0.9613 1.2734 1.1008 1.0342 1.1489 1.2161 1.0665 0.9516 1.0624 1.0265 1.1667 0.9681 0.9430 1.0141 1.1791 0.9709 1.0102 1.0580 1.2321 1.0116 1.0289 0.9269 0.9393 1.1246 1.0487 1.1223 1.1157 0.9738 0.9525 0.9124
0.4635 0.6062 0.5273 0.4976 0.5500 0.5843 0.5120 0.4595 0.5122 0.4952 0.5603 0.4662 0.4534 0.4860 0.5625 0.4661 0.4895 0.5086 0.5910 0.4872 0.4929 0.4485 0.4539 0.5406 0.5028 0.5393 0.5354 0.4676 0.4623 0.4404
0.3057 0.4060 0.3501 0.3310 0.3651 0.3872 0.3408 0.3036 0.3384 0.3259 0.3707 0.3096 0.3003 0.3228 0.3775 0.3085 0.3202 0.3362 0.3932 0.3226 0.3280 0.2935 0.2991 0.3589 0.3339 0.3559 0.3557 0.3093 0.3034 0.2922
0.6562 0.8683 0.7499 0.7020 0.7852 0.8329 0.7274 0.6510 0.7249 0.7032 0.8006 0.6565 0.6466 0.6907 0.8043 0.6631 0.6925 0.7231 0.8428 0.6889 0.7014 0.6374 0.6407 0.7674 0.7176 0.7690 0.7614 0.6654 0.6508 0.6224
1.4197 1.8876 1.6310 1.5331 1.6967 1.7968 1.5786 1.4065 1.5696 1.5174 1.7234 1.4345 1.3923 1.5008 1.7445 1.4359 1.4941 1.5624 1.8221 1.4944 1.5230 1.3674 1.3917 1.6608 1.5518 1.6598 1.6481 1.4376 1.4084 1.3491
-0.3479 -0.4612 -0.3958 -0.3722 -0.4170 -0.4424 -0.3865 -0.3433 -0.3847 -0.3716 -0.4258 -0.3469 -0.3432 -0.3660 -0.4280 -0.3510 -0.3667 -0.3843 -0.4484 -0.3650 -0.3720 -0.3375 -0.3386 -0.4079 -0.3806 -0.4080 -0.4035 -0.3528 -0.3436 -0.3303
dB = reshape(x((n-1)^2+1:2*(n-1)^2),[n-1,n-1])
dB = 49×49
-0.7671 -1.4794 -1.1889 -0.6632 -0.6091 -0.9174 -0.9572 -0.8564 -1.2919 -1.5003 -1.4821 -1.1780 -1.2001 -1.4399 -0.9749 -1.0941 -1.3005 -1.1523 -1.2406 -0.8458 -0.8755 -1.2904 -1.1953 -0.7815 -1.1088 -0.8290 -0.7059 -1.4871 -1.0271 -0.7387
-0.7014 -0.9972 -1.4334 -0.6450 -1.4131 -0.8650 -1.0542 -0.9570 -0.8857 -1.1241 -1.2580 -0.6627 -1.5752 -1.0206 -1.0571 -0.5852 -1.2458 -1.4416 -1.3939 -1.4102 -0.7027 -1.0503 -0.7914 -1.5710 -0.5791 -0.6178 -0.8306 -1.5393 -0.8213 -1.0100
-1.3987 -0.9358 -1.2485 -1.4661 -1.4134 -0.7486 -1.4896 -1.4423 -1.2488 -1.0516 -0.9565 -1.5000 -1.0950 -1.1257 -1.1427 -1.2666 -0.7565 -0.7762 -1.3715 -1.5730 -0.9660 -1.2863 -1.2233 -0.6713 -1.4615 -0.8110 -1.4616 -1.1483 -1.4464 -1.0828
-1.2156 -1.0667 -1.1013 -0.8108 -0.6275 -0.9769 -0.5925 -0.9976 -1.2301 -1.0742 -1.2096 -0.6313 -1.5682 -1.1445 -1.0673 -1.5237 -1.1282 -1.2501 -1.0468 -1.2274 -1.3954 -1.5357 -0.9583 -1.2283 -0.9820 -0.9388 -0.7739 -1.1405 -1.1063 -0.9530
-0.5938 -0.8336 -0.8765 -1.4393 -1.1236 -1.2753 -0.7344 -0.8175 -1.1087 -0.8866 -0.8209 -1.1047 -0.8042 -1.2581 -0.8475 -1.4512 -1.5375 -1.4795 -0.8872 -1.2816 -1.5588 -1.0834 -0.6814 -0.7928 -0.8789 -1.2111 -0.6990 -0.7543 -1.4918 -1.0580
-1.4736 -1.5068 -1.2816 -1.2894 -1.5208 -0.7813 -1.0492 -1.1753 -1.2928 -1.5285 -1.1491 -0.6965 -0.9757 -0.9490 -1.5674 -0.6909 -1.1737 -0.7768 -1.2652 -1.5100 -1.4397 -0.8827 -0.9552 -0.8215 -1.5282 -1.5638 -1.1214 -1.0913 -1.5516 -0.9201
-1.0930 -1.0444 -0.9593 -1.4505 -0.8991 -1.2440 -1.1207 -1.0571 -1.0825 -1.5597 -1.5594 -0.9578 -1.2742 -0.6559 -0.7613 -0.9322 -1.3862 -0.8759 -1.5645 -1.2653 -0.6615 -1.3675 -0.8405 -0.9174 -1.0383 -0.7848 -0.8923 -1.1261 -1.1631 -1.3548
-1.1222 -0.8317 -1.1453 -1.5157 -1.3841 -1.0207 -0.6374 -1.4762 -1.0657 -1.0912 -1.4273 -1.3905 -0.6423 -1.0340 -1.4393 -0.8196 -1.5622 -1.0742 -1.3476 -1.1460 -0.9154 -0.8141 -0.8190 -0.7755 -0.8653 -1.3347 -0.9597 -0.7429 -0.6966 -0.9616
-1.1841 -1.0089 -1.4655 -0.7174 -1.1791 -1.0110 -1.2357 -1.5124 -1.0755 -1.5703 -0.8611 -0.8218 -1.3253 -0.6255 -0.6103 -1.1380 -1.4636 -1.4676 -1.4072 -0.9585 -0.8138 -0.8120 -1.2006 -1.0845 -0.6623 -1.4640 -1.3692 -1.0716 -1.5042 -1.2892
-1.3381 -1.2802 -1.4206 -0.9716 -1.3673 -0.7529 -1.4673 -1.3956 -1.5136 -1.0335 -1.2601 -1.4621 -0.9981 -1.3159 -0.9096 -1.1904 -0.7915 -1.0791 -1.2837 -1.2122 -0.8955 -1.0424 -1.1006 -1.5284 -1.1598 -1.0499 -1.4168 -1.1128 -1.1712 -1.0586
[3*trace(dA)-dB A*dB+B*dA]'-[3*trace(C)+B B*A-eye(n-1)]'
ans = 98×49
1.0e-10 *
0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2773 0.2773 0.2773 0.2773 0.2773 0.2773 0.2774 0.2774
0.2774 0.2774 0.2774 0.2773 0.2774 0.2773 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2774 0.2773 0.2773 0.2774 0.2773 0.2774 0.2774 0.2773 0.2774 0.2774
0.2774 0.2774 0.2773 0.2774 0.2773 0.2774 0.2773 0.2774 0.2773 0.2774 0.2773 0.2774 0.2773 0.2774 0.2774 0.2774 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774
0.2774 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2773 0.2773 0.2773 0.2773 0.2774 0.2774 0.2773 0.2774 0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774
0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2775 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2773 0.2774
0.2773 0.2773 0.2773 0.2774 0.2774 0.2773 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774
0.2774 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2774 0.2774 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2773 0.2774 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2773
0.2774 0.2774 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2773 0.2774 0.2773 0.2773 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774
0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2773 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2773 0.2774 0.2774 0.2773 0.2773 0.2774 0.2773
0.2774 0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2773 0.2774 0.2773 0.2773 0.2774 0.2774 0.2774 0.2774 0.2773 0.2774 0.2774 0.2773 0.2774 0.2773 0.2774 0.2774 0.2773 0.2775 0.2774 0.2774 0.2773 0.2773 0.2774
function res = fun(x,A,B,C,n)
dA = reshape(x(1:(n-1)^2),[n-1,n-1]);
dB = reshape(x((n-1)^2+1:2*(n-1)^2),[n-1,n-1]);
res = [3*trace(dA)-dB A*dB+B*dA]' - [3*trace(C)+B B*A-eye(n-1)]';
res = res(:);
end
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)