5 views (last 30 days)
Jayesh Jawandhia on 15 Mar 2023
Commented: Torsten on 4 Apr 2023
I have a system of differential equation in x,y with boundary conditions. I want to solve it analytically and numerically. The analytical solutions coming in the form of error functions. Can someone please help me find analytical and numerical solution for this, I have been trying for weeks now, really need to solve this for my thesis. Please help. Alan Stevens on 15 Mar 2023
Here's a numerical approach:
First manipulate the equations tspan = [0, 120];
ic = [80000, 0.001];
[t, xy] = ode45(@rate, tspan, ic);
x = xy(:,1); y = xy(:,2);
subplot(2,1,1)
plot(t,x),grid
xlabel('t'), ylabel('x')
subplot(2,1,2)
plot(t,y),grid
xlabel('t'), ylabel('y') function dxydt = rate(~,xy)
a = 0.1; b = 0.2; c = -0.1; % Replace with desired values
x = xy(1); y = xy(2);
dxydt = [a-b+c*x*y; % eqn (3)
c*y*(1-y) - a*y/x]; % eqn (5)
end
Torsten on 4 Apr 2023
What's the problem ?
function dxydt = rate(t,xy);
m = ...;
n = ...;
r = ...;
p = ...;
q = ...;
s = ...;
a = m*t^2+n*t+r;
b = p*t^2+q*t+s;
x = xy(1);
y = xy(2);
dxydt = [a-b+c*x*y;c*y*(1-y)-a*y/x];
end

### Categories

Find more on Programming in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!