- Define the dependent variable y as h and the independent variable x as x.
- Define the initial conditions y(0) = h0 and z(0) = 0.
- Define the constants a, c, and L.
- Define the step size dx as a small positive value.
- Set up a loop to iterate over x values from 0 to L, with a step size of dx.
- Inside the loop, use the current values of y and z to calculate the derivatives dy/dx and dz/dx using the given differential equation.
- Use the fourth-order Runge-Kutta method to update the values of y and z at the next x value.
- Check if the current x value is equal to either 0 or L. If so, update the value of y at that boundary condition.
- Repeat the loop until the final x value is reached.
solving a second order non linear differential equation using RK 4TH order method
19 views (last 30 days)
Show older comments
Differential equation : h d^2h/dx^2 + (dh/dx)^2 - dh/dx * tan(ax) + c - h * sec^2(ax) * a = 0
Boundary conditions: h(x=0)=h0 and h(x=L)=h0
Dependent variable: h
Independent variable: x
constants: a,c,L,h0
Method to be used : RK 4th order
please help me
let y = h and z = dh/dx=dy/dx,dz/dx = a * sec^2(ax) + (1/h) * (z * tan(ax) - z^2 - c) confused how to give boundary conditions
6 Comments
Answers (1)
Jack
on 3 Apr 2023
Here's an example code in MATLAB for solving the given differential equation using the RK4 method. Note that you need to define the constants and initial conditions before running the code.
% Define constants and initial conditions
a = 1;
c = 1;
L = 1;
h0 = 1;
N = 1000; % Number of grid points
x = linspace(0, L, N)';
dx = x(2) - x(1);
h = h0*ones(N, 1); % Initial guess for h
dhdx = zeros(N, 1); % Initial guess for dh/dx
% Define the function f(x, y) = [dy/dx, d^2y/dx^2]
f = @(x, y) [y(2); ...
(-y(2)^2 + y(2)*tan(a*x) - c + h0*sec(a*x)^2*a)/h0];
% Solve the differential equation using the RK4 method
for n = 1:10000
k1 = dx*f(x, [h, dhdx]);
k2 = dx*f(x + dx/2, [h + k1(1:N)/2, dhdx + k1(N+1:end)/2]);
k3 = dx*f(x + dx/2, [h + k2(1:N)/2, dhdx + k2(N+1:end)/2]);
k4 = dx*f(x + dx, [h + k3(1:N), dhdx + k3(N+1:end)]);
h = h + (k1(1:N) + 2*k2(1:N) + 2*k3(1:N) + k4(1:N))/6;
dhdx = dhdx + (k1(N+1:end) + 2*k2(N+1:end) + 2*k3(N+1:end) + k4(N+1:end))/6;
end
% Plot the solution
plot(x, h);
xlabel('x');
ylabel('h');
title('Solution of the differential equation');
2 Comments
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!