Integration using BVP4C
3 views (last 30 days)
Show older comments
I have a coupled non-linear differential equations
(d^2 f)/(dy^2 )+m2*g2*dB/dy-2*i*R2*g1*f - g3*G1*y - R4*g1 = 0
(d^2 B)/(dy^2 )+t4/(1-i*H1)*df/dy=0
Boundary conditions are
f=0 at y=0
f=C1 at y=1
And
dB/dy-(t4/(P1* (1-i*H1 ) ))* B=0 at y=0
dB/dy+(t4/(P2 (1-i*H1 ) ))* B=0 at y=1
While I run the program I get the value of U1 using the boundary conditions (y=0 and y=1), but now i need to get the integration of U1, between the limits 0 to 1.
In BVP4c, the solution is obtained using the boundary conditions (y=0 and y=1), but now how to get the solution? Please help me
Matlab programs is enclosed for your reference
close all
clc
p=1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
m2=20;
R1=997.1;
R2=3;
C1=1;
R3=4420;
B=0.5;
H1=0.25;
K1=3;
R4=1;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(3);
y(4);
-m2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3)];
BC = @(ya,yb)[ya(1);yb(1)-C1;ya(4)-m1.*ya(2);yb(4)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
U1 = bvp4c(dydx,BC,solinit);
hold on
7 Comments
Torsten
on 9 Apr 2023
Thanks a lot
You are welcome. I moved my comment to an answer (which now can be accepted).
Accepted Answer
Torsten
on 9 Apr 2023
Moved: Torsten
on 9 Apr 2023
close all
clc
p=1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
m2=20;
R1=997.1;
R2=3;
C1=1;
R3=4420;
B=0.5;
H1=0.25;
K1=3;
R4=1;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(3);
y(4);
-m2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3);
y(1)];
BC = @(ya,yb)[ya(1);yb(1)-C1;ya(4)-m1.*ya(2);yb(4)+m2.*yb(2);ya(5)];
yinit = [0.01;0.01;0.01;0.01;0];
solinit = bvpinit(linspace(0,1,50),yinit);
U1 = bvp4c(dydx,BC,solinit);
hold on
% plot y1(x) = f(x)
plot(U1.x,real(U1.y(1,:)),'r')
% plot y5(x) = integral_{t=0}^(t=x} f(t) dt
plot(U1.x,real(U1.y(5,:)),'b')
hold off
grid on
% print y5(1) = integral_{t=0}^(t=1} f(t) dt
U1.y(5,end)
0 Comments
More Answers (0)
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!