How to calculate and plot ndefinite triple integral?

5 views (last 30 days)
I have a triple indefinite integral (image attached).
Here respectively sx = sy = s*sin(a)/sqrt(2) and sz= s*cos(a). Parameter s=0.1 and parameter a changes from 0 to pi/2 – 10 points can be chosen [0 10 20 30 40 50 60 70 80 90]. Is it possible to solve such integral and to obtain the curve – plot(a,F)?
s=0.1;
a = 0:10:90;
fun = @(x,y,z) ((x.*z)./((x.^2+y.^2+z.^2))).*((2*pi)^(3/2))*exp(-(0.5.*sqrt(x.^2+y.^2+z.^2))).*exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))));
f3 = arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p)),a);
plot(a,f3);
  3 Comments
Hexe
Hexe on 12 Apr 2023
Edited: Hexe on 12 Apr 2023
You are right. I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much. The inportant thing is that in the second exponent there are 2 vectors: q and s. For the qx and qy sx=sy=s*sin(a)/sqrt(2) and for the qz sz=s*cos(a). Thus the code looks different than the written formula. Or the code for this case muct be written otherwise?
Thank you, I forgot about integration limits: [0, inf, 0, 2*pi, 0, pi].
Torsten
Torsten on 12 Apr 2023
I forgot about the coefficient (2*pi)^(3/2) before exponent, but it does not matter much.
There are many more differences.
In your formula:
exp(-0.5.*(x.^2+y.^2+z.^2))
In your code:
exp(-(0.5.*sqrt(x.^2+y.^2+z.^2)))
In your formula:
exp(1i.*x*(s*sin(p)/sqrt(2))+1i.*y*(s*sin(p)/sqrt(2))+1i*z.*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)))
In your code:
exp(1i.*x*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*y*(s*sin(p)/sqrt(2))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2))))).*exp(1i.*z*(s*cos(p))-2*((x.^2+y.^2+z.^2)+((z.^2)./((x.^2+y.^2+z.^2)))))

Sign in to comment.

Accepted Answer

Torsten
Torsten on 12 Apr 2023
s = 0.1;
a = 0:5:360;
a = a*pi/180;
fun = @(x,y,z,p) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z*(s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3 = (2*pi)^1.5*arrayfun(@(p)integral3(@(x,y,z)fun(x,y,z,p),0,Inf,0,2*pi,0,pi),a);
figure(1)
plot(a,real(f3))
figure(2)
plot(a,imag(f3))
  8 Comments
Torsten
Torsten on 19 Apr 2023
Edited: Torsten on 19 Apr 2023
Why do you replace s by k and not by m in your code ?
And if you loop over the elements of a, why do you use the arrayfun ? Arrayfun computes the values for f3 for the complete vector a over and over again. I can understand that your code takes a while to finish.
Since the results for f3 are complex-valued, you can only apply surf on abs(f3) or imag(f3) or real(f3), but not f3 itself.
n = 1;
t = 1;
r = 1;
S = 1:0.5:5;
P = 0:10:180;
P = P*pi/180;
for i = 1:numel(S)
s = S(i);
for j = 1:numel(P)
p = P(j);
fun = @(x,y,z) x.*z./(x.^2+y.^2+z.^2).*exp(-0.5*(x.^2+y.^2+z.^2)).*exp(1i*x*(s*sin(p)/sqrt(2))+1i*y*(s*sin(p)/sqrt(2))+1i*z* (s*cos(p))-2*(x.^2+y.^2+z.^2+z.^2./(x.^2+y.^2+z.^2)));
f3(i,j) = (2*pi)^1.5*integral3(fun,0,Inf,0,2*pi,0,pi);
end
end
f3
f3 =
Columns 1 through 10 0.2759 + 0.0978i 0.2654 + 0.1215i 0.2546 + 0.1408i 0.2450 + 0.1555i 0.2375 + 0.1655i 0.2330 + 0.1710i 0.2320 + 0.1722i 0.2346 + 0.1689i 0.2405 + 0.1613i 0.2490 + 0.1491i 0.2481 + 0.1379i 0.2262 + 0.1685i 0.2041 + 0.1917i 0.1847 + 0.2080i 0.1700 + 0.2183i 0.1613 + 0.2237i 0.1594 + 0.2247i 0.1644 + 0.2215i 0.1759 + 0.2138i 0.1929 + 0.2008i 0.2134 + 0.1689i 0.1782 + 0.2014i 0.1439 + 0.2231i 0.1145 + 0.2360i 0.0928 + 0.2427i 0.0802 + 0.2455i 0.0776 + 0.2459i 0.0849 + 0.2442i 0.1017 + 0.2396i 0.1268 + 0.2302i 0.1750 + 0.1897i 0.1269 + 0.2193i 0.0816 + 0.2345i 0.0444 + 0.2395i 0.0179 + 0.2392i 0.0031 + 0.2375i 0.0001 + 0.2369i 0.0087 + 0.2377i 0.0288 + 0.2387i 0.0599 + 0.2368i 0.1360 + 0.2006i 0.0769 + 0.2231i 0.0239 + 0.2278i -0.0173 + 0.2221i -0.0451 + 0.2130i -0.0598 + 0.2061i -0.0627 + 0.2044i -0.0540 + 0.2083i -0.0334 + 0.2160i -0.0002 + 0.2235i 0.0991 + 0.2028i 0.0321 + 0.2151i -0.0244 + 0.2074i -0.0651 + 0.1900i -0.0903 + 0.1722i -0.1028 + 0.1605i -0.1050 + 0.1579i -0.0976 + 0.1646i -0.0794 + 0.1787i -0.0481 + 0.1958i 0.0660 + 0.1979i -0.0053 + 0.1987i -0.0608 + 0.1782i -0.0967 + 0.1502i -0.1163 + 0.1255i -0.1247 + 0.1104i -0.1259 + 0.1072i -0.1208 + 0.1159i -0.1073 + 0.1349i -0.0814 + 0.1600i 0.0379 + 0.1880i -0.0342 + 0.1771i -0.0849 + 0.1451i -0.1130 + 0.1090i -0.1249 + 0.0802i -0.1284 + 0.0635i -0.1285 + 0.0602i -0.1263 + 0.0699i -0.1188 + 0.0914i -0.1004 + 0.1218i 0.0149 + 0.1748i -0.0549 + 0.1531i -0.0981 + 0.1121i -0.1165 + 0.0712i -0.1201 + 0.0412i -0.1188 + 0.0250i -0.1180 + 0.0220i -0.1186 + 0.0315i -0.1172 + 0.0532i -0.1072 + 0.0857i Columns 11 through 19 0.2593 + 0.1324i 0.2701 + 0.1111i 0.2801 + 0.0856i 0.2880 + 0.0566i 0.2929 + 0.0252i 0.2940 - 0.0074i 0.2912 - 0.0397i 0.2849 - 0.0702i 0.2759 - 0.0978i 0.2136 + 0.1816i 0.2357 + 0.1553i 0.2566 + 0.1218i 0.2736 + 0.0818i 0.2841 + 0.0369i 0.2866 - 0.0104i 0.2807 - 0.0571i 0.2672 - 0.1003i 0.2481 - 0.1379i 0.1583 + 0.2137i 0.1930 + 0.1877i 0.2267 + 0.1509i 0.2546 + 0.1034i 0.2724 + 0.0476i 0.2768 - 0.0125i 0.2670 - 0.0718i 0.2446 - 0.1251i 0.2134 - 0.1689i 0.1001 + 0.2277i 0.1462 + 0.2071i 0.1925 + 0.1718i 0.2322 + 0.1209i 0.2581 + 0.0570i 0.2649 - 0.0137i 0.2510 - 0.0833i 0.2189 - 0.1438i 0.1750 - 0.1897i 0.0450 + 0.2250i 0.0994 + 0.2139i 0.1566 + 0.1843i 0.2075 + 0.1338i 0.2418 + 0.0651i 0.2514 - 0.0140i 0.2335 - 0.0916i 0.1920 - 0.1564i 0.1360 - 0.2006i -0.0024 + 0.2090i 0.0562 + 0.2094i 0.1212 + 0.1888i 0.1817 + 0.1421i 0.2241 + 0.0715i 0.2368 - 0.0133i 0.2154 - 0.0967i 0.1652 - 0.1631i 0.0991 - 0.2028i -0.0395 + 0.1839i 0.0189 + 0.1963i 0.0882 + 0.1862i 0.1560 + 0.1461i 0.2055 + 0.0763i 0.2215 - 0.0118i 0.1975 - 0.0989i 0.1400 - 0.1649i 0.0660 - 0.1979i -0.0654 + 0.1541i -0.0110 + 0.1773i 0.0589 + 0.1781i 0.1313 + 0.1461i 0.1867 + 0.0796i 0.2060 - 0.0096i 0.1803 - 0.0986i 0.1172 - 0.1627i 0.0379 - 0.1880i -0.0810 + 0.1233i -0.0332 + 0.1550i 0.0340 + 0.1660i 0.1082 + 0.1428i 0.1680 + 0.0814i 0.1906 - 0.0070i 0.1642 - 0.0964i 0.0971 - 0.1576i 0.0149 - 0.1748i
Hexe
Hexe on 21 Apr 2023
Thank you very much. Your notes helped me to build the necessary surface.

Sign in to comment.

More Answers (0)

Categories

Find more on Graphics Performance in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!