A faster and more compact way to create a list of distances among all the pairs of points

1 view (last 30 days)
Hi, could you suggest a faster and more compact way to create a list of distances among all the pairs of points?
My attempt here below:
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Plot just to see the 6 points
plot(x,y,'o','MarkerFaceColor','b','markersize',15)
xlim([0 10])
ylim([0 10])
% Calculate the distances among each pair of points
Z = squareform(pdist([x' y']));
% Create a list that includes 3 elements: i-point ID, j-point ID, distance(i,j)
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
list(k,:) = [i j Z(i,j)];
k = k + 1;
end
end
list,
list = 15×3
1.0000 2.0000 1.4142 1.0000 3.0000 2.2361 1.0000 4.0000 6.3246 1.0000 5.0000 3.1623 1.0000 6.0000 5.6569 2.0000 3.0000 1.0000 2.0000 4.0000 5.0990 2.0000 5.0000 2.0000 2.0000 6.0000 4.2426 3.0000 4.0000 4.1231

Accepted Answer

chicken vector
chicken vector on 29 Apr 2023
Edited: chicken vector on 29 Apr 2023
N = 1e4;
x = randi(10,N,1);
y = randi(10,N,1);
tic
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorIdx = (1 : size(xIdx, 1))' > (1 : size(xIdx, 2));
xy = [x(:), y(:)];
dist = pdist2(xy, xy);
distPdist = dist(vectorIdx);
list = [xIdx(vectorIdx) , ...
yIdx(vectorIdx) , ...
distPdist]
list = 49995000×3
1.0000 2.0000 5.3852 1.0000 3.0000 6.7082 1.0000 4.0000 3.0000 1.0000 5.0000 5.8310 1.0000 6.0000 8.6023 1.0000 7.0000 2.2361 1.0000 8.0000 8.5440 1.0000 9.0000 8.5440 1.0000 10.0000 5.0000 1.0000 11.0000 10.8167
toc
Elapsed time is 2.501384 seconds.

More Answers (2)

Image Analyst
Image Analyst on 28 Apr 2023
Try pdist2
% Input (x and y coordinates of 6 points)
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
xy = [x(:), y(:)]
xy = 6×2
1 1 2 2 2 3 3 7 4 2 5 5
% Get distances between every (x,y) point and every other (x,y) point:
distances = pdist2(xy, xy)
distances = 6×6
0 1.4142 2.2361 6.3246 3.1623 5.6569 1.4142 0 1.0000 5.0990 2.0000 4.2426 2.2361 1.0000 0 4.1231 2.2361 3.6056 6.3246 5.0990 4.1231 0 5.0990 2.8284 3.1623 2.0000 2.2361 5.0990 0 3.1623 5.6569 4.2426 3.6056 2.8284 3.1623 0
  12 Comments
Image Analyst
Image Analyst on 28 Apr 2023
No, I must be thinking of the old way. Anyway, you can post a "final" fixed up program for a new answer and he can accept that.
Sim
Sim on 29 Apr 2023
Thanks a lot both @Image Analyst and @chicken vector!!
If @chicken vector you want to re-post an Answer as @Image Analyst suggested I will accept it :-) Meanwhile, obviously, I will upvote both :-)

Sign in to comment.


chicken vector
chicken vector on 28 Apr 2023
Edited: chicken vector on 28 Apr 2023
You can build the indeces without for loop:
N = 5e2;
x = randi(10,1,N);
y = randi(10,1,N);
% Loop method:
tic;
k = 1;
for i = 1 : length(x)-1
for j = i+1 : length(x)
loopList(k,:) = [i j];
k = k + 1;
end
end
loopTime = toc;
% Vectorised method:
tic;
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
vectorList = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2)))];
vectorTime = toc;
fprintf("Time with for loop: %.3f seconds\n", loopTime)
Time with for loop: 0.988 seconds
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
Time with vectorisation: 0.009 seconds
You can also increase the speed for computing the distance with the following:
% Squareform method:
tic
squareFormZ = squareform(pdist([x' y']));
squareFormTime = toc;
% Vectorised method:
tic;
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
vectorZ = sqrt(deltaX(:).^2 + deltaY(:).^2);
vectorTime = toc;
fprintf("Time with squareform: %.3f seconds\n", squareFormTime)
Time with squareform: 0.072 seconds
fprintf("Time with vectorisation: %.3f seconds\n", vectorTime)
Time with vectorisation: 0.009 seconds
You can build your original list with the following wrapped up:
% Data:
x = [1 2 2 3 4 5];
y = [1 2 3 7 2 5];
% Initialise indeces:
xIdx = repmat(1 : length(x), length(x), 1);
yIdx = xIdx';
% Initialise elements distribution:
X = repmat(x, length(x), 1);
Y = repmat(y, length(y), 1);
% Compute distances:
deltaX = tril(x' - X, -1);
deltaY = tril(y' - Y, -1);
% Re-arrange to vector:
deltaX = deltaX((1 : size(deltaX, 1))' > (1 : size(deltaX, 2)));
deltaY = deltaY((1 : size(deltaY, 1))' > (1 : size(deltaY, 2)));
% Build lsit:
list = [xIdx((1 : size(xIdx, 1))' > (1 : size(xIdx, 2))) , ...
yIdx((1 : size(yIdx, 1))' > (1 : size(yIdx', 2))) , ...
sqrt(deltaX.^2 + deltaY.^2)]
list = 15×3
1.0000 2.0000 1.4142 1.0000 3.0000 2.2361 1.0000 4.0000 6.3246 1.0000 5.0000 3.1623 1.0000 6.0000 5.6569 2.0000 3.0000 1.0000 2.0000 4.0000 5.0990 2.0000 5.0000 2.0000 2.0000 6.0000 4.2426 3.0000 4.0000 4.1231

Categories

Find more on Performance and Memory in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!