error that keeps happening

1 view (last 30 days)
yara
yara on 3 May 2023
Answered: Image Analyst on 4 May 2023
When I run this code everything works up until Part d where this error keeps showing up, although I did define the function earlier:
Unrecognized function or variable 'theta_explicit'.
Error in hw4_405758924_p1 (line 138)
plot(t,theta_explicit,'b',t,theta_semi_implicit,'r',t,theta_implicit,'g');
%% Part a
% Pendulum physics problem using explicit Euler method
clear all; close all;
% Define constants
g = 9.8; % gravitational acceleration (m/s^2)
L = 2.5; % length of string (m)
dt = 0.01; % time step (s)
t_end = 20; % end time (s)
% Initial conditions
theta0 = pi/2; % initial angle (radians)
w0 = 0; % initial angular velocity (radians/s)
% Pre-allocate arrays
N = round(t_end/dt);
theta_explicit = zeros(N+1,1);
w_explicit = zeros(N+1,1);
E_total = zeros(N+1,1);
% Set initial conditions
theta_explicit(1) = theta0;
w_explicit(1) = w0;
E_total(1) = g*L*(1-cos(theta_explicit(1)));
% Compute theta and w at each time step
for k = 1:N
w_explicit(k+1) = w_explicit(k) - g*L*sin(theta_explicit(k))*dt;
theta_explicit(k+1) = theta_explicit(k) + w_explicit(k)*dt;
E_total(k+1) = g*L*(1-cos(theta_explicit(k+1))) + 0.5*L^2*w_explicit(k+1)^2;
end
% Plot results
t = linspace(0,t_end,N+1);
plot(t,theta_explicit,'b',t,w_explicit,'r',t,E_total,'g');
title('Explicit Euler Method');
xlabel('Time (s)');
ylabel('Angular Position (radians) / Angular Velocity (radians/s) / Total Energy per unit mass (J/kg)');
legend('Angular Position','Angular Velocity','Total Energy');
saveas(gcf,'explicit_euler.png');
%% Part b
% Pendulum physics problem using semi-implicit Euler method
clear all; close all;
% Define constants
g = 9.8; % gravitational acceleration (m/s^2)
L = 2.5; % length of string (m)
dt = 0.01; % time step (s)
t_end = 20; % end time (s)
% Initial conditions
theta0 = pi/2; % initial angle (radians)
w0 = 0; % initial angular velocity (radians/s)
% Pre-allocate arrays
N = round(t_end/dt);
theta_semi_implicit = zeros(N+1,1);
w_semi_implicit = zeros(N+1,1);
E_total = zeros(N+1,1);
% Set initial conditions
theta_semi_implicit(1) = theta0;
w_semi_implicit(1) = w0;
E_total(1) = g*L*(1-cos(theta_semi_implicit(1)));
% Compute theta and w at each time step
for k = 1:N
w_semi_implicit(k+1) = w_semi_implicit(k) - g*L*sin(theta_semi_implicit(k+1))*dt;
theta_semi_implicit(k+1) = theta_semi_implicit(k) + w_semi_implicit(k+1)*dt;
E_total(k+1) = g*L*(1-cos(theta_semi_implicit(k+1))) + 0.5*L^2*w_semi_implicit(k+1)^2;
end
% Plot results
t = linspace(0,t_end,N+1);
plot(t,theta_semi_implicit,'b',t,w_semi_implicit,'r',t,E_total,'g');
title('Semi-Implicit Euler Method');
xlabel('Time (s)');
ylabel('Angular Position (radians) / Angular Velocity')
%% Part c
% Constants
g = 9.8; % m/s^2
L = 2.5; % m
dt = 0.01; % s
t_start = 0; % s
t_end = 20; % s
theta0 = pi/2; % rad
n_steps = ceil((t_end - t_start)/dt);
% Initialize arrays
theta_implicit = zeros(n_steps, 1);
w_implicit = zeros(n_steps, 1);
energy = zeros(n_steps, 1);
% Initial conditions
theta_implicit(1) = 5; %<<< made up value for theta0;
w_implicit(1) = 0; % starting from rest
g = 9.80665; %<<< added missing value for g (m/sec^2)
L = 1; %<<< made up value for L
% Solve using implicit Euler method
for i = 2:n_steps
w_implicit(i) = w_implicit(i-1) - g*L*sin(theta_implicit(i-1))*dt;
theta_implicit(i) = newton_raphson(theta_implicit(i-1), w_implicit(i), dt);
energy(i) = g*L*(1 - cos(theta_implicit(i))) + 0.5*(L*w_implicit(i))^2;
end
% Plotting
t = linspace(t_start, t_end, n_steps);
hold on
plot(t, theta_implicit, 'r', 'LineWidth', 2)
title('Angular position of pendulum')
xlabel('Time (s)')
ylabel('Angular position (rad)')
legend('Explicit', 'Semi-implicit', 'Implicit')
saveas(gcf, 'pendulum_position.png')
figure()
hold on
plot(t, energy, 'r', 'LineWidth', 2)
title('Total energy of pendulum')
xlabel('Time (s)')
ylabel('Energy per unit mass (J/kg)')
legend('Explicit', 'Semi-implicit', 'Implicit')
Warning: Ignoring extra legend entries.
saveas(gcf, 'pendulum_energy.png')
%% Part d
% Plot angular position
figure;
plot(t,theta_explicit,'b',t,theta_semi_implicit,'r',t,theta_implicit,'g');
Unrecognized function or variable 'theta_explicit'.
title('Angular Position of Mass vs Time');
xlabel('Time (s)');
ylabel('Angular Position (radians)');
legend('Explicit Euler','Semi-Implicit Euler','Implicit Euler');
saveas(gcf,'angular_position.png');
%% Part e
% Calculating total energy per unit mass for each method
g = 9.8; % gravitational acceleration (m/s^2)
E_explicit = g*L*(1 - cos(theta_explicit)) + 0.5*L^2*w_explicit.^2;
E_semi_implicit = g*L*(1 - cos(theta_semi_implicit)) + 0.5*L^2*w_semi_implicit.^2;
E_implicit = g*L*(1 - cos(theta_implicit)) + 0.5*L^2*w_implicit.^2;
% Plotting total energy per unit mass for each method
figure;
plot(t, E_explicit, 'r-', 'LineWidth', 1.5);
hold on;
plot(t, E_semi_implicit, 'b-', 'LineWidth', 1.5);
plot(t, E_implicit, 'g-', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Total Energy per unit mass (J/kg)');
title('Total Energy per unit mass of Simple Pendulum');
legend('Explicit Euler', 'Semi-Implicit Euler', 'Implicit Euler');
grid on;
% Saving the plot
saveas(gcf, 'pendulum_energy.png');
% Newton-Raphson method to solve implicit Euler equation
function [theta_next] = newton_raphson(theta_curr, omega_curr, dt)
g = 9.80665; %<<< added missing value for g (m/sec^2)
L = 1; %<<< made up value for L
theta_next = theta_curr; % initial guess
f = @(theta_next) theta_next - theta_curr - dt*omega_curr - (dt^2/2)*(-g*L*sin(theta_next));
df = @(theta_next) 1 - (dt^2/2)*(-g*L*cos(theta_next));
for i = 1:5 % 5 iterations for convergence
theta_next = theta_next - f(theta_next)/df(theta_next);
end
end
  1 Comment
Walter Roberson
Walter Roberson on 3 May 2023
clear all; close all;
in the middle of your code is not doing you any favors.

Sign in to comment.

Answers (1)

Image Analyst
Image Analyst on 4 May 2023
In line 46 you have a clear that erases the variable:
%% Part b
% Pendulum physics problem using semi-implicit Euler method
clear all; close all;
Get rid of that clear all close all line. There were quite a few more errors in there. I believe I've fixed them for you.
%% Part a
% Pendulum physics problem using explicit Euler method
clear all;
close all;
clc;
% Define constants
g = 9.8; % gravitational acceleration (m/s^2)
L = 2.5; % length of string (m)
dt = 0.01; % time step (s)
t_end = 20; % end time (s)
% Initial conditions
theta0 = pi/2; % initial angle (radians)
w0 = 0; % initial angular velocity (radians/s)
% Pre-allocate arrays
N = round(t_end/dt);
theta_explicit = zeros(N+1,1);
w_explicit = zeros(N+1,1);
E_total = zeros(N+1,1);
% Set initial conditions
theta_explicit(1) = theta0;
w_explicit(1) = w0;
E_total(1) = g*L*(1-cos(theta_explicit(1)));
% Compute theta and w at each time step
for k = 1:N-1
w_explicit(k+1) = w_explicit(k) - g*L*sin(theta_explicit(k))*dt;
theta_explicit(k+1) = theta_explicit(k) + w_explicit(k)*dt;
E_total(k+1) = g*L*(1-cos(theta_explicit(k+1))) + 0.5*L^2*w_explicit(k+1)^2;
end
% Plot results
t = linspace(0,t_end,N+1)';
figure('Name', 'Part a', 'NumberTitle', 'off')
plot(t,theta_explicit,'b',t,w_explicit,'r',t,E_total,'g');
grid on;
title('Explicit Euler Method');
xlabel('Time (s)');
ylabel('Angular Position (radians) / Angular Velocity (radians/s) / Total Energy per unit mass (J/kg)');
legend('Angular Position','Angular Velocity','Total Energy');
drawnow; % Force immediate screen update.
saveas(gcf,'explicit_euler.png');
%% Part b
% Pendulum physics problem using semi-implicit Euler method
% Define constants
g = 9.8; % gravitational acceleration (m/s^2)
L = 2.5; % length of string (m)
dt = 0.01; % time step (s)
t_end = 20; % end time (s)
% Initial conditions
theta0 = pi/2; % initial angle (radians)
w0 = 0; % initial angular velocity (radians/s)
% Pre-allocate arrays
N = round(t_end/dt);
theta_semi_implicit = zeros(N+1,1);
w_semi_implicit = zeros(N+1,1);
E_total = zeros(N+1,1);
% Set initial conditions
theta_semi_implicit(1) = theta0;
w_semi_implicit(1) = w0;
E_total(1) = g*L*(1-cos(theta_semi_implicit(1)));
% Compute theta and w at each time step
for k = 1:N-1
w_semi_implicit(k+1) = w_semi_implicit(k) - g*L*sin(theta_semi_implicit(k+1))*dt;
theta_semi_implicit(k+1) = theta_semi_implicit(k) + w_semi_implicit(k+1)*dt;
E_total(k+1) = g*L*(1-cos(theta_semi_implicit(k+1))) + 0.5*L^2*w_semi_implicit(k+1)^2;
end
% Plot results
t = linspace(0,t_end,N+1)';
figure('Name', 'Part b', 'NumberTitle', 'off')
plot(t,theta_semi_implicit,'b',t,w_semi_implicit,'r',t,E_total,'g');
grid on;
title('Semi-Implicit Euler Method');
xlabel('Time (s)');
ylabel('Angular Position (radians) / Angular Velocity')
drawnow; % Force immediate screen update.
%% Part c
% Constants
g = 9.8; % m/s^2
L = 2.5; % m
dt = 0.01; % s
t_start = 0; % s
t_end = 20; % s
theta0 = pi/2; % rad
n_steps = N+1; %ceil((t_end - t_start)/dt);
% Initialize arrays
theta_implicit = zeros(n_steps, 1);
w_implicit = zeros(n_steps, 1);
energy = zeros(n_steps, 1);
% Initial conditions
theta_implicit(1) = 5; %<<< made up value for theta0;
w_implicit(1) = 0; % starting from rest
g = 9.80665; %<<< added missing value for g (m/sec^2)
L = 1; %<<< made up value for L
% Solve using implicit Euler method
for k = 2:n_steps
w_implicit(k) = w_implicit(k-1) - g*L*sin(theta_implicit(k-1))*dt;
theta_implicit(k) = newton_raphson(theta_implicit(k-1), w_implicit(k), dt);
energy(k) = g*L*(1 - cos(theta_implicit(k))) + 0.5*(L*w_implicit(k))^2;
end
% Plotting
figure('Name', 'Part c', 'NumberTitle', 'off')
t = linspace(t_start, t_end, n_steps);
hold on
plot(t, theta_implicit, 'r', 'LineWidth', 2)
grid on;
title('Angular position of pendulum')
xlabel('Time (s)')
ylabel('Angular position (rad)')
saveas(gcf, 'pendulum_position.png')
drawnow; % Force immediate screen update.
hold on
plot(t, energy, 'r', 'LineWidth', 2)
grid on;
title('Total energy of pendulum')
xlabel('Time (s)')
ylabel('Energy per unit mass (J/kg)')
legend('theta_implicit', 'Energy')
saveas(gcf, 'pendulum_energy.png')
drawnow; % Force immediate screen update.
%% Part d
% Plot angular position
figure('Name', 'Part d', 'NumberTitle', 'off')
plot(t,theta_explicit,'b',t,theta_semi_implicit,'r',t,theta_implicit,'g');
grid on;
title('Angular Position of Mass vs Time');
xlabel('Time (s)');
ylabel('Angular Position (radians)');
legend('Explicit Euler','Semi-Implicit Euler','Implicit Euler');
saveas(gcf,'angular_position.png');
drawnow; % Force immediate screen update.
%% Part e
% Calculating total energy per unit mass for each method
g = 9.8; % gravitational acceleration (m/s^2)
E_explicit = g*L*(1 - cos(theta_explicit)) + 0.5*L^2*w_explicit.^2;
E_semi_implicit = g*L*(1 - cos(theta_semi_implicit)) + 0.5*L^2*w_semi_implicit.^2;
E_implicit = g*L*(1 - cos(theta_implicit)) + 0.5*L^2*w_implicit.^2;
% Plotting total energy per unit mass for each method
figure('Name', 'Part e', 'NumberTitle', 'off')
plot(t, E_explicit, 'r-', 'LineWidth', 1.5);
grid on;
hold on;
plot(t, E_semi_implicit, 'b-', 'LineWidth', 1.5);
plot(t, E_implicit, 'g-', 'LineWidth', 1.5);
xlabel('Time (s)');
ylabel('Total Energy per unit mass (J/kg)');
title('Total Energy per unit mass of Simple Pendulum');
legend('Explicit Euler', 'Semi-Implicit Euler', 'Implicit Euler');
grid on;
drawnow; % Force immediate screen update.
% Saving the plot
saveas(gcf, 'pendulum_energy.png');
uiwait(helpdlg('Done!'))
%================================================================================
% Newton-Raphson method to solve implicit Euler equation
function [theta_next] = newton_raphson(theta_curr, omega_curr, dt)
g = 9.80665; %<<< added missing value for g (m/sec^2)
L = 1; %<<< made up value for L
theta_next = theta_curr; % initial guess
f = @(theta_next) theta_next - theta_curr - dt*omega_curr - (dt^2/2)*(-g*L*sin(theta_next));
df = @(theta_next) 1 - (dt^2/2)*(-g*L*cos(theta_next));
for k = 1:5 % 5 iterations for convergence
theta_next = theta_next - f(theta_next)/df(theta_next);
end
end

Categories

Find more on Programming in Help Center and File Exchange

Tags

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!