Clear Filters
Clear Filters

Hi everyone. How can I fix this issue?>>>Array indices must be positive integers or logical values.

3 views (last 30 days)
clear all
clc
% Initialization Phase
N = 4;%from paper
Xmin1 = -5;%define Xmin
Xmax1 = 3;%define Xmax
Xmin2 = -3;%define Xmin
Xmax2 = 7;%define Xmax
Xmin3 = -1;%define Xmin
Xmax3 = 8;%define Xmax
T = 100;%Define max iteration
%fitness1=zeros(1,T);
fitness=zeros(1,T);
bestfitness=zeros(1,T);
bestfitness(1,1)=0;
%Initializing Y1-Y4
Y1 = zeros(1, N);
Y1(1:4) = Xmin1 + rand(1, 4) * (Xmax1 - Xmin1);
disp(['Initial Y1 values: ' num2str(Y1(1:4))]);
Y2 = zeros(1, N);
Y2(1:4) = Xmin2 + rand(1, 4) * (Xmax2 - Xmin2);
disp(['Initial Y2 values: ' num2str(Y2(1:4))]);
Y3 = zeros(1, N);
Y3(1:4) = Xmin3 + rand(1, 4) * (Xmax3 - Xmin3);
disp(['Initial Y3 values: ' num2str(Y3(1:4))]);
Xbest1 = zeros(1, T);% Initialize Xbest as an array
Xbest2 = zeros(1, T);
Xbest3 = zeros(1, T);
%X1 = zeros(1, T);
%X2 = zeros(1, T);
%X3 = zeros(1, T);
Xbar1 = zeros(1, T);
Xbar2 = zeros(1, T);
Xbar3 = zeros(1, T);
X1 = Xmin1 + rand() * (Xmax1 - Xmin1);
X2 = Xmin2 + rand() * (Xmax2 - Xmin2);
X3 = Xmin3 + rand() * (Xmax3 - Xmin3);
%Xbest(1) = min(Y); % Assign the minimum fitness value of the 4 Intial values as XBest
fprintf('X1 = %f\n', X1);
fprintf('X2 = %f\n', X2);
fprintf('X3 = %f\n', X3);
fitness1= (X1(1,1) - 1).^2 + (X2(1) - 2).^2 + (X3(1) - 3).^2;
fprintf('fitness1 = %f\n', fitness1);
Xbest1(1)=X1;
Xbest2(1)=X2;
Xbest3(1)=X3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% While not max iteration
t = 2;
while t < T+1
%Measurement Phase
%for t = 1:N
d = rand(1, N);
%fprintf('d = %f\n', d);
for i = 1:N
if d(i) > 0.5
delta1 = (exp(-10 * t / T) * ((Xmax1 - Xmin1)) / 2);
delta2 = (exp(-10 * t / T) * ((Xmax2 - Xmin2)) / 2);
delta3 = (exp(-10 * t / T) * ((Xmax3 - Xmin3)) / 2);
Y1(t) = Xbest1(t-1) + ((-delta1) + rand() * (delta1- (-delta1)));
Y2(t) = Xbest2(t-1) + ((-delta2) + rand() * (delta2 - (-delta2)));
Y3(t) = Xbest3(t-1) + ((-delta3) + rand() * (delta3 - (-delta3)));
else
Y1(t) = Xbest1(t-1);
clear all
clc
% Initialization Phase
N = 4;%from paper
Xmin1 = -5;%define Xmin
Xmax1 = 3;%define Xmax
Xmin2 = -3;%define Xmin
Xmax2 = 7;%define Xmax
Xmin3 = -1;%define Xmin
Xmax3 = 8;%define Xmax
T = 100;%Define max iteration
%fitness1=zeros(1,T);
fitness=zeros(1,T);
bestfitness=zeros(1,T);
bestfitness(1,1)=0;
%Initializing Y1-Y4
Y1 = zeros(1, N);
Y1(1:4) = Xmin1 + rand(1, 4) * (Xmax1 - Xmin1);
disp(['Initial Y1 values: ' num2str(Y1(1:4))]);
Y2 = zeros(1, N);
Y2(1:4) = Xmin2 + rand(1, 4) * (Xmax2 - Xmin2);
disp(['Initial Y2 values: ' num2str(Y2(1:4))]);
Y3 = zeros(1, N);
Y3(1:4) = Xmin3 + rand(1, 4) * (Xmax3 - Xmin3);
disp(['Initial Y3 values: ' num2str(Y3(1:4))]);
Xbest1 = zeros(1, T);% Initialize Xbest as an array
Xbest2 = zeros(1, T);
Xbest3 = zeros(1, T);
%X1 = zeros(1, T);
%X2 = zeros(1, T);
%X3 = zeros(1, T);
Xbar1 = zeros(1, T);
Xbar2 = zeros(1, T);
Xbar3 = zeros(1, T);
X1 = Xmin1 + rand() * (Xmax1 - Xmin1);
X2 = Xmin2 + rand() * (Xmax2 - Xmin2);
X3 = Xmin3 + rand() * (Xmax3 - Xmin3);
%Xbest(1) = min(Y); % Assign the minimum fitness value of the 4 Intial values as XBest
fprintf('X1 = %f\n', X1);
fprintf('X2 = %f\n', X2);
fprintf('X3 = %f\n', X3);
fitness1= (X1(1,1) - 1).^2 + (X2(1) - 2).^2 + (X3(1) - 3).^2;
fprintf('fitness1 = %f\n', fitness1);
Xbest1(1)=X1;
Xbest2(1)=X2;
Xbest3(1)=X3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% While not max iteration
t = 2;
while t < T+1
%Measurement Phase
%for t = 1:N
d = rand(1, N);
%fprintf('d = %f\n', d);
for i = 1:N
if d(i) > 0.5
delta1 = (exp(-10 * t / T) * ((Xmax1 - Xmin1)) / 2);
delta2 = (exp(-10 * t / T) * ((Xmax2 - Xmin2)) / 2);
delta3 = (exp(-10 * t / T) * ((Xmax3 - Xmin3)) / 2);
Y1(t) = Xbest1(t-1) + ((-delta1) + rand() * (delta1- (-delta1)));
Y2(t) = Xbest2(t-1) + ((-delta2) + rand() * (delta2 - (-delta2)));
Y3(t) = Xbest3(t-1) + ((-delta3) + rand() * (delta3 - (-delta3)));
else
Y1(t) = Xbest1(t-1);
Y2(t) = Xbest2(t-1);
Y3(t) = Xbest3(t-1);
end
end
%end
% Estimation Phase
% Initial Estimation
for k=2:t
if Y1(t - N + 1) < Y1(t - N + 2)
Xbar1(k) = Y1(t - N + 1) + (t - N + 2) - Y1(t - N + 1) * rand();
else
Xbar1(k) = Y1(t - N + 2) + (t - N + 1) - Y1(t - N + 2) * rand();
end
if Y2(t - N + 1) < Y2(t - N + 2)
Xbar2(k) = Y2(t - N + 1) + (t - N + 2) - Y2(t - N + 1) * rand();
else
Xbar2(k) = Y2(t - N + 2) + (t - N + 1) - Y2(t - N + 2) * rand();
end
if Y3(t - N + 1) < Y3(t - N + 2)
Xbar3(k) = Y3(t - N + 1) + (t - N + 2) - Y3(t - N + 1) * rand();
else
Xbar3(k) = Y3(t - N + 2) + (t - N + 1) - Y3(t - N + 2) * rand();
end
end
for k = 3:N
Xbar1(k) = Xbar1(k - 1) + (1/k) * (Y1(t - N + k) - Xbar1(k - 1));
Xbar2(k) = Xbar2(k - 1) + (1/k) * (Y2(t - N + k) - Xbar2(k - 1));
Xbar3(k) = Xbar3(k - 1) + (1/k) * (Y3(t - N + k) - Xbar3(k - 1));
end
X1(t) = Xbar1(k); % Update X(t) as X(k)
X2(t) = Xbar2(k); % Update X(t) as X(k)
X3(t) = Xbar3(k); % Update X(t) as X(k)
%Evaluation Phase
% Fitness evaluation
fitness(1,t) = (X1(t) - 1).^2 + (X2(t) - 2).^2 + (X3(t) - 3).^2;
fprintf('fitness = %f\n', fitness(1,1));
% Update bestfitness and Xbest
if fitness(1,t) > bestfitness(1,t-1)
bestfitness(1,t) = fitness(1,t);
Xbest1(1,t) = X1(1,t);
Xbest2(1,t) = X2(1,t);
Xbest3(1,t) = X3(1,t);
else
bestfitness(1,t) = fitness(1,t-1);
Xbest1(1,t) = Xbest1(1,t-1);
Xbest2(1,t) = Xbest1(1,t-1);
Xbest3(1,t) = Xbest1(1,t-1);
end
t=t+1;
end
Xbest1;
Xbest2;
Xbest3; + (t - N + 1) - Y1(t - N + 2) * rand();
end
if Y2(t - N + 1) < Y2(t - N + 2)
Xbar2(k) = Y2(t - N + 1) + (t - N + 2) - Y2(t - N + 1) * rand();
else
Xbar2(k) = Y2(t - N + 2) + (t - N + 1) - Y2(t - N + 2) * rand();
end
if Y3(t - N + 1) < Y3(t - N + 2)
Xbar3(k) = Y3(t - N + 1) + (t - N + 2) - Y3(t - N + 1) * rand();
else
Xbar3(k) = Y3(t - N + 2) + (t - N + 1) - Y3(t - N + 2) * rand();
end
end
for k = 3:N
Xbar1(k) = Xbar1(k - 1) + (1/k) * (Y1(t - N + k) - Xbar1(k - 1));
Xbar2(k) = Xbar2(k - 1) + (1/k) * (Y2(t - N + k) - Xbar2(k - 1));
Xbar3(k) = Xbar3(k - 1) + (1/k) * (Y3(t - N + k) - Xbar3(k - 1));
end
X1(t) = Xbar1(k); % Update X(t) as X(k)
X2(t) = Xbar2(k); % Update X(t) as X(k)
X3(t) = Xbar3(k); % Update X(t) as X(k)
%Evaluation Phase
% Fitness evaluation
fitness(1,t) = (X1(t) - 1).^2 + (X2(t) - 2).^2 + (X3(t) - 3).^2;
fprintf('fitness = %f\n', fitness(1,1));
% Update bestfitness and Xbest
if fitness(1,t) > bestfitness(1,t-1)
bestfitness(1,t) = fitness(1,t);
Xbest1(1,t) = X1(1,t);
Xbest2(1,t) = X2(1,t);
Xbest3(1,t) = X3(1,t);
else
bestfitness(1,t) = fitness(1,t-1);
Xbest1(1,t) = Xbest1(1,t-1);
Xbest2(1,t) = Xbest1(1,t-1);
Xbest3(1,t) = Xbest1(1,t-1);
end
t=t+1;
end
Xbest1;
Xbest2;
Xbest3;
Error in Untitled (line 150)
if Y1(t - N + 1) < Y1(t - N + 2)
I need the values for Y as 4 in an array##

Answers (1)

KALYAN ACHARJYA
KALYAN ACHARJYA on 4 Jun 2023
Error Here
>> t - N + 1
ans =
-1
hence in MTALAB Y1(-1) is not valid statement, all indices must be real & positive number only
(1,2,3,4,5 or any based on the array length) not Y1(0) or Y1(-1) etc
>> t - N + 2
ans =
0
>> whos Y2
Name Size Bytes Class Attributes
Y2 1x4 32 double
>>
Please check the if condition indices data
  1 Comment
JESHURUN AUGUSTINE
JESHURUN AUGUSTINE on 4 Jun 2023
>> t - N + 1
##Formula is used as in the article below
DOI: 10.1109/ACCESS.2017.2777894
Is there anything wrong with the codes in the paper that I should know of
Pseudocode 2 Generation of Initial Estimation, X¯(2) at k=2
if Y(tN+1)<Y(tN+2)
X¯(2)=rand(U[Y(tN+1),Y(tN+2)])
else
X¯(2)=rand(U[Y(tN+2),Y(tN+1)])

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!