Clear Filters
Clear Filters

How to run the following function on GPU or make it Faster

4 views (last 30 days)
I have following MATLAB function It is very slow it takes so much time,it takes 5 seconds to run, but i want to run it in miliseconds,
Can anyone Help me running this code on GPU. I have also Attached the Dataset Below
[valueestimationimage ] = Parameterestimate(Batchdata)
fig=figure; set(fig,'visible','off');
h=histogram(Batchdata,10000,"BinMethod","sturges",'BinWidth',1,'BinLimits',[1 10000]);
sumofbins=max(h.Values);
% size_MP=round(10/100*sumofbins);
size_MP=round(10/100*sumofbins);
ValueofHistogram= h.Values;
Bindata=h.Data;
Binedges=h.BinEdges;
Binedges(end) = Inf;
deleted_data_idx = false(size(Bindata));
for i=1: length(ValueofHistogram)
if ValueofHistogram(i)<size_MP;
deleted_data_idx(Bindata >= Binedges(i) & Bindata < Binedges(i+1)) = true;
end
end
close(fig);
Bindata(deleted_data_idx) = [];
fig=figure; set(fig,'visible','off');
Freq_Data = Bindata;
h = histogram(Freq_Data, 10000, "BinMethod", "sturges", 'BinWidth', 1, 'BinLimits', [1 10000]);
[N, Edges, Bin] = histcounts(Freq_Data, 10000, "BinMethod", "sturges", 'BinWidth', 1, 'BinLimits', [1 10000]);
Retain = N > max(N) / 3.5;
% Find the bin indices that satisfy the condition
FindBins = find(Retain);
% Update RetainDataLv based on the valid bin indices
RetainDataLv = ismember(Bin, FindBins);
% Apply the logical indexing to retrieve the corresponding data
Bindata = Freq_Data(RetainDataLv);
close(fig);
Bindata=round(Bindata).';
[GC, GR] = groupcounts(Bindata) ;
countThresh =30 ; % change this untill you see that the data is fully denoised
denoisedData = Bindata(ismember(Bindata, GR(GC>countThresh))) ;
% incomingdata= denoisedData.';
if isempty(denoisedData)
incomingdata=Bindata.';
else
incomingdata=denoisedData.';
end
[row, column] = size(incomingdata);
for eachrow=1:row
if column>=1000
% buffered(eachrow,:) = buffer(incomingdata, 1000);
groupsize = 1000;
sig = incomingdata(:);
if isempty(sig)
error('signal is empty, cannot buffer it');
end
sigsize = numel(sig);
fullcopies = floor(groupsize ./ sigsize);
sig = repmat(sig, 1+fullcopies, 1);
sigsize = numel(sig);
leftover = mod(sigsize, groupsize);
if leftover ~= 0
sig = [sig; sig(1:groupsize-leftover)];
end
buffered = buffer(sig, groupsize);
else
targetsize = 1000;
sizeofincomingdata = column;
nrep = targetsize / sizeofincomingdata;
fullrep = floor(nrep);
leftover = targetsize - fullrep * sizeofincomingdata;
buffered=[repmat(incomingdata(eachrow,:), 1, fullrep), incomingdata(1:leftover)];
sig=buffered.';
end
end
signal=sig.';
[numImages, lenImage] = size( signal);
imbg = false(10000,lenImage); % background "color"
imfg = ~imbg(1,1); % forground "color"
imSizeOut=[10000 lenImage];
% ImageSize
for k= 1:numImages
imData = round( signal(k,:)); % get pattern
[~,Y] = meshgrid(1:lenImage,1:10000); % make a grid
% black and white image
BW = imbg;
BW(Y==imData)=imfg;
valueestimation=imbinarize(imresize(uint8(BW),imSizeOut));
% convert to uint8 (0 255)
valueestimationimage = im2uint8(valueestimation);
% resize (from 1000x1000)
SE=strel('disk',2);
BW=imdilate(BW,SE);
BW=imbinarize(imresize(uint8(BW),imSizeOut));
% convert to uint8 (0 255)
imoriginalestimate = im2uint8(BW);
end
end

Answers (1)

Lakshya
Lakshya on 19 Jun 2023

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!