- Calculate the damping coefficient (c) using the formula: c = 2 * damping_ratio * sqrt(mass * stiffness), where damping_ratio is the desired inherent damping ratio (2% in this case), mass is the mass matrix, and stiffness is the stiffness matrix.
- Multiply the damping coefficient by the mass matrix to obtain the damping matrix (C).
How can i obtain a damping Matrix C, with an inherent damping matrix of 2% for all the modes ?
11 views (last 30 days)
Show older comments
I have written code to obtain eigen values and vectors using Stiffness K and Mass M and i want to obtain the damping matrix using an inherent damping ratio of 2% of the structure for all the vibration modes. How do i do it? here under is the my code thus far
clc;
h=[5.5]+[0:3.96:20*3.95]; % Total floor height(m)%
%--------------Start of Mass Matrix---------------%
M(1,1)=1.126e+003 ; % unit: ton
M(20,20)=1.170e+003 ; % unit: ton
for i=2:19
M(i,i)=1.100e+003; % unit: ton
end
disp('Mass Matrix(ton):'); disp(M)
%--------------end of Mass Matrix-----------------%
%--------------Start of Stiffness Matrix----------%
for i=1:5
k(1,i)=862.07e+003; % unit: kN/m
end
for i=6:11
k(1,i)=554.17e+003 ; % unit: kN/m
end
for i=12:14
k(1,i)=453.51e+003 ; % unit: kN/m
end
for i=15:17
k(1,i)=291.23e+003 ; % unit: kN/m
end
for i=18:19
k(1,i)=256.46e+003 ; % unit: kN/m
end
k(1,20)=171.70e+003 ; % unit: kN/m
K=zeros(20,20)
for j=1:(20-1)
K(j,j) = k(1,j)+k(1,j+1);
K(j,j+1) = -k(1,j+1);
K(j+1,j) = -k(1,j+1);
end
K(20,20)=171.70e+003 ; % unit: kN/m
%--------------End of Stiffness Matrix--------------%
%----Start of Eigen Values and Eigne Vectors--------%
[eigvec,eigval]=eig(K,M); %Eigen Values and Vectors%
wn = sort(sqrt(diag(eigval)));
f =(wn/(2*pi));
Tn = (2*pi)./wn;
disp('Mode Omega(w) Time_Period ')
for i = 1:length(wn)
fprintf (' %d %.2f %.2f \n',i,wn(i,1),Tn(i,1))
end
%-------End of Eigen values and Eigne Vectors-------%
%-----Start of Normalisation of mode shapes---------%
for j = 1 : length(wn)
eigvec(:,j)=eigvec(:,j)/eigvec(length(wn),j);
end
disp('Mode shapes:'); disp(eigvec)
%-----------End of Normalisation of mode shapes-----------%
0 Comments
Accepted Answer
Anuj
on 10 Jul 2023
Hi Kimbugwe,
To obtain the damping matrix using an inherent damping ratio of 2% for all vibration modes, you can modify your existing code by following these steps:
Here's the modified code to incorporate these changes:
clc;
h = [5.5] + [0:3.96:20*3.95]; % Total floor height(m)
% Start of Mass Matrix
M(1,1) = 1.126e+003; % unit: ton
M(20,20) = 1.170e+003; % unit: ton
for i = 2:19
M(i,i) = 1.100e+003; % unit: ton
end
disp('Mass Matrix(ton):');
disp(M);
%--------------Start of Stiffness Matrix----------%
for i=1:5
k(1,i)=862.07e+003; % unit: kN/m
end
for i=6:11
k(1,i)=554.17e+003 ; % unit: kN/m
end
for i=12:14
k(1,i)=453.51e+003 ; % unit: kN/m
end
for i=15:17
k(1,i)=291.23e+003 ; % unit: kN/m
end
for i=18:19
k(1,i)=256.46e+003 ; % unit: kN/m
end
k(1,20)=171.70e+003 ; % unit: kN/m
K=zeros(20,20)
for j=1:(20-1)
K(j,j) = k(1,j)+k(1,j+1);
K(j,j+1) = -k(1,j+1);
K(j+1,j) = -k(1,j+1);
end
K(20,20)=171.70e+003 ; % unit: kN/m
% Calculate the damping coefficient (c)
damping_ratio = 0.02; % 2% inherent damping ratio
mass = M;
stiffness = K;
c = 2 * damping_ratio * sqrt(mass * stiffness);
% Multiply the damping coefficient by the mass matrix to obtain the damping matrix (C)
C = c .* M;
% Start of Eigen Values and Eigen Vectors
[eigvec, eigval] = eig(K, M); % Eigen Values and Vectors
wn = sort(sqrt(diag(eigval)));
f = wn / (2*pi);
Tn = (2*pi) ./ wn;
disp('Mode Omega(w) Time_Period ')
for i = 1:length(wn)
fprintf(' %d %.2f %.2f \n', i, wn(i,1), Tn(i,1))
end
% Start of Normalisation of mode shapes
for j = 1:length(wn)
eigvec(:,j) = eigvec(:,j) / eigvec(length(wn),j);
end
disp('Mode shapes:');
disp(eigvec);
By adding the calculation of the damping coefficient and multiplying it with the mass matrix, you will obtain the desired damping matrix (C) using the inherent damping ratio of 2% for all vibration modes.
3 Comments
Piotr
on 10 Jul 2023
Are sure about this ? My question is why c = 2 * damping_ratio * sqrt(mass * stiffness) is additionally multiplied by M. I am not sure but maybe I will look for inverse eigenproblem when we have eigenvectors and eigenvalues available and we want to get the origin matrices including damping matrix ? Have you checked if the above-mentioned solution gave you the proper damping ratios of desired modes ?
More Answers (0)
See Also
Categories
Find more on Parametric Spectral Estimation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!