非线性积分方程组中含变限积分fsolve数值求解报错: Limits of integration must be double or single scalars
4 views (last 30 days)
Show older comments
问题描述:
待求方程组{f1=0, f2=0, f3=0}中包含变量pl以及pr,pl和pr的表达式中包含上限是变量的积分(代码中加粗部分)。在通过matlabFunction处理为匿名函数后,int被integral替代,而integral不支持变量作为上下限,故报错:
Error using integral
Limits of integration must be double or single scalars.
可能有用的参考:
https://www.zhihu.com/question/46915508
这是我找到的一个相近的问题,但是我看不懂。。。
问题代码:
++++++++++++++++++++++++++
% 参数定义部分省略
beta = atan(x1/y1);
xL = sqrt(x1^2+y1^2)*cos(pi-alph-beta);
DL = sqrt(x1^2+y1^2)*sin(pi-alph-beta);
xR = sqrt(x1^2+y1^2)*cos(beta-alph);
DR = sqrt(x1^2+y1^2)*sin(beta-alph);
LL = DL^2+(xL-x)^2;
RR = DR^2+(xR-x)^2;
pl = -12*mu_L*rho_S^4*h_m^3*Uratio^3*(Uratio*int(LL^2*x,0,x)+C*int(LL^1.5, 0,x))/(rho_L*T0^3*K_L^3)+P0;
pr = -12*mu_L*rho_S^4*h_m^3*Uratio^3*(Uratio*int(RR^2*x,0,x)+C*int(RR^1.5, 0,x))/(rho_L*T0^3*K_L^3)+P0;
% 对pl和pr进行定积分,得到目标方程组
f1 = int(pl*x,x,-L,0)+int(pr*x,x,0,L)+M/d;
f2 = int(pl,x,-L,0)*sin(alph+tilt)+int(pr,x,0,L)*sin(alph-tilt)-G/d-2*L*P_e*sin(alph)*cos(tilt);
f3 = int(pl,x,-L,0)*cos(alph+tilt)-int(pr,x,0,L)*cos(alph-tilt)+2*L*P_e*sin(alph)*sin(tilt);
% 进行求解
% 初始值猜测
initial_guess = [0.5, 0.1, 2];
% 定义求解函数
equations = matlabFunction(f1,f2,f3, 'Vars', {x1, y1, Uratio});
% 使用fsolve求解方程组
result = fsolve(@(vars) equations(vars(1), vars(2), vars(3)), initial_guess);
+++++++++++++++++++++++++++++++++
0 Comments
Accepted Answer
Ayush
on 22 Aug 2023
Edited: Ayush
on 22 Aug 2023
此邮件使用英语,旨在为您提供最快速的答复。如果您希望得到中文回复,请告诉我
们。我们同事会为您翻译此邮件。
As mentioned in the documentation the `integral` function does support symbolic expressions and numbers as limits of integration. This means you can use symbolic variables as limits without encountering the error mentioned earlier.
% Define the symbolic variables and expressions
syms x pl pr
pl_expr = -12*mu_L*rho_S^4*h_m^3*Uratio^3*(Uratio*integral(LL^2*x,0,x)+C*integral(LL^1.5, 0,x))/( rho_L*T0^3*K_L^3)+P0;
pr_expr = -12*mu_L*rho_S^4*h_m^3*Uratio^3*(Uratio*integral(RR^2*x,0,x)+C*integral(RR^1.5, 0,x))/( rho_L*T0^3*K_L^3)+P0;
Hence, you can use symbolic expressions as limits of integration in the `integral` function without encountering any errors.
0 Comments
More Answers (0)
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!